scholarly journals Evaluation of N sources, cover crops, and tillage systems for corn grown under organic management

Phyton ◽  
2014 ◽  
Vol 83 (1) ◽  
pp. 71-81
Author(s):  
Suarez Tapia A ◽  
MB Villamil ◽  
LJ Grabau
2021 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Luana Ramos Passos Ribeiro ◽  
Robélio Leandro Marchão ◽  
Alexsandra Duarte de Oliveira ◽  
Karina Pulrolnik ◽  
...  

2014 ◽  
Vol 38 (3) ◽  
pp. 972-979 ◽  
Author(s):  
Arminda Moreira de Carvalho ◽  
Mercedes Maria da Cunha Bustamante ◽  
Zayra Azeredo do Prado Almondes ◽  
Cícero Célio de Figueiredo

Phosphorus fractions play a key role in sustaining the productivity of acid-savanna Oxisols and are influenced by tillage practices. The aim of this study was to quantify different P forms in an Oxisol (Latossolo Vermelho-Amarelo) from the central savanna region of Brazil under management systems with cover crops in maize rotation. Three cover crops (Canavalia brasiliensis, Cajanus cajan (L.), and Raphanus sativus L.) were investigated in maize rotation systems. These cover crops were compared to spontaneous vegetation. The inorganic forms NaHCO3-iP and NaOH-iP represented more than half of the total P in the samples collected at the depth of 5-10 cm during the rainy season when the maize was grown. The concentration of inorganic P of greater availability (NaHCO3-iP and NaOH-iP) was higher in the soil under no-tillage at the depth of 5-10 cm during the rainy season. Concentrations of organic P were higher during the dry season, when the cover crops were grown. At the dry season, organic P constituted 70 % of the labile P in the soil planted to C. cajan under no-tillage. The cover crops were able to maintain larger fractions of P available to the maize, resulting in reduced P losses to the unavailable pools, mainly in no-tillage systems.


2021 ◽  
Vol 208 ◽  
pp. 104866
Author(s):  
Lenon Henrique Lovera ◽  
Zigomar Menezes de Souza ◽  
Diego Alexander Aguilera Esteban ◽  
Ingrid Nehmi de Oliveira ◽  
Camila Viana Vieira Farhate ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1877
Author(s):  
Małgorzata Holka ◽  
Jerzy Bieńkowski

Given the problem of climate change and the requirements laid down by the European Union in the field of gradual decarbonization of production, it is necessary to implement solutions of reducing greenhouse gas (GHG) emissions into agricultural practice. This research paper aimed to evaluate the carbon footprint and life-cycle costs of grain maize production in various tillage systems. The material for the analyses was data from 2015–2017 collected on 15 farms located in the Wielkopolska region (Poland) and growing maize for grain in three tillage systems: conventional, reduced, and no-tillage. The life-cycle assessment and life-cycle costing methodologies were applied to assess the GHG emissions and costs associated with the grain maize production in the stages from “cradle-to-farm gate”, i.e., from obtaining raw materials and producing means for agricultural production, through the processes of maize cultivation to grain harvesting. The calculated values of the carbon footprint indicator for maize production in conventional, reduced, and no-tillage systems were 2347.4, 2353.4, and 1868.7 CO2 eq. ha−1, respectively. The largest source of GHG emissions was the use of nitrogen fertilizers. Non-inversion tillage with cover crops and leaving a large amount of crop residues in the field increased the sequestration of organic carbon and contributed to a significant reduction of the carbon footprint in maize production. The conventional tillage system demonstrated the highest overall life-cycle costs per hectare.


2021 ◽  
Vol 205 ◽  
pp. 104770
Author(s):  
Marcos Rodrigues ◽  
Paul John Anthony Withers ◽  
Amin Soltangheisi ◽  
Vitor Vargas ◽  
Marquel Holzschuh ◽  
...  

jpa ◽  
1989 ◽  
Vol 2 (1) ◽  
pp. 63-67 ◽  
Author(s):  
R. R. Duncan ◽  
R. E. Dominy

Soil Research ◽  
2010 ◽  
Vol 48 (3) ◽  
pp. 258 ◽  
Author(s):  
Luiz F. C. Leite ◽  
Francisco C. Oliveira ◽  
Ademir S. F. Araújo ◽  
Sandra R. S. Galvão ◽  
Janyelle O. Lemos ◽  
...  

No-tillage and organic farming are important strategies to improve soil quality. This study aimed to quantify the effects of the tillage systems and organic management on total organic carbon (TOC), labile C (CL), and biological indicators in an Acrisol in north-eastern Brazil. Five systems were studied: NV, native vegetation; NT/ORG, no-tillage plus organic fertiliser; NT/CHE, no-tillage plus chemical fertiliser; NT/CHE/ORG, no-tillage plus organic and chemical fertiliser; CT/CHE, conventional tillage plus chemical fertiliser. Soil samples were collected in the 0–0.10 and 0.10–0.20 m depths. TOC stocks were higher in NT/CHE/ORG (0–0.10 m, 14.0 Mg/ha; 0.10–0.20 m, 13.0 Mg/ha) and NT/ORG (0–0.10 m, 12.6 Mg/ha; 0.10–0.20 m, 11.6 Mg/ha) than in CT/CHE and NV systems. CL stocks were higher in NT/ORG (3.61 Mg/ha) at 0–0.10 m and in NT/ORG, NT/CHE, and NT/CHE/ORG at 0.10–0.20 m. At 0–0.10 m, microbial biomass C content was higher in the NT/CHE/ORG (190 mg/kg) and NT/ORG (155 mg/kg). Soil microbial respiration rate was similar in all systems. However, qCO2 was higher in the NT/CHE and CT/CHE systems, suggesting a stress in the soil microbial biomass. No-tillage and organic management promoted positive changes in soil organic carbon and soil microbial properties and improved soil quality.


Author(s):  
Rafael B. Teixeira ◽  
Monica C. R. Z. Borges ◽  
Cassiano G. Roque ◽  
Marcela P. Oliveira

ABSTRACT Soil management alters soil physical attributes and may affect crop yield. In order to evaluate soil physical attributes in layers from 0 to 0.40 m and soybean grain yield, in the 2012/2013 agricultural year, an essay was installed in the experimental area of the Federal University of Mato Grosso do Sul (UFMS/CPCS). Soil tillage systems were: conventional tillage (CT), minimum tillage (MT) and no tillage (DS), the cover crops used were millet, sunn hemp and fallow. The experimental design was randomized blocks with split plots. For the layer of 0.20-0.30 m, millet provided the best results for soil bulk density, macro and microporosity. The resistance to penetration (RP) was influenced in the layer of 0-0.10 m, and millet provided lower RP. The DS provided the lowest RP values for the layer of 0.10-0.20 m. The treatments did not influence yield or thousand-seed weight.


2014 ◽  
Vol 38 (3) ◽  
pp. 923-933 ◽  
Author(s):  
Rodrigo Fernandes de Souza ◽  
Cícero Célio de Figueiredo ◽  
Nuno Rodrigo Madeira ◽  
Flávia Aparecida de Alcântara

Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT) and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m) twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC), microbial biomass carbon (MBC), oxidizable fractions, and the carbon fractions fulvic acid (C FA), humic acid (C HA) and humin (C HUM) were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m) where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover plant.


Sign in / Sign up

Export Citation Format

Share Document