scholarly journals Ectopic expression of the PttKN1 gene in Cardamine hirsuta mediated via the floral dip method

Phyton ◽  
2015 ◽  
Vol 84 (2) ◽  
pp. 368-374
Author(s):  
Chen XJ ◽  
RJ Guo ◽  
YJ Tao ◽  
X Hu ◽  
QL Xu
Biologia ◽  
2011 ◽  
Vol 66 (2) ◽  
Author(s):  
Quan-le Xu ◽  
Jiang-ling Dong ◽  
Nan Gao ◽  
Mei-yu Ruan ◽  
Hai-yan Jia ◽  
...  

AbstractKNOX (KNOTTED1-like homeobox) genes encode homeodomain-containing transcription factors which play crucial roles in meristem maintenance and proper patterning of organ initiation. PttKN1 gene, isolated from the vascular cambium of hybrid aspen (Populus tremula × P. tremuloides), is a member of class I KNOX gene family. In order to understand the roles of PttKN1 gene in meristem activity and morphogenesis as well as to explore the possibility to generate novel ornamental lines via its ectopic expression, it was introduced into the genome of Begonia maculata Raddi by Agrobacterium tumefasciens-mediated gene transformation here. Four types of transgenic plants were observed, namely coral-like (CL) type, ectopic foliole (EF) type, phyllotaxy-irregular (IP) type and cup-shaped (CS) type, which were remarkably different from corresponding wild type and were not also observed in the regenerated plantlets of wild type plant. Among these four types of transgenic plants, the phenotype of coral-like was observed for the first time in the transformants ectopically expressed KNOX genes. The observation of scanning electron microscope (SEM) showed ectopic meristems on the adaxial leaf surface of the transformants. Interestingly, the plantlets with ectopic foliole could generate new ectopic folioles from the original ectopic folioles again, and the plants regenerated from the EF-type transformants could also maintain the original morphology. The same specific RT-PCR band of the four types of transgenic plantlets showed that PttKN1 was ectopically expressed. All these data demonstrated that the ectopic expression of PttKN1 caused a series of alterations in morphology which provided possibilities producing novel ornamental lines and that PttKN1 played important roles in meristem initiation, maintenance and organogenesis events as other class I KNOX genes.


2015 ◽  
Vol 43 (1) ◽  
pp. 35-40
Author(s):  
Quanle XU ◽  
Mei-yu RUAN ◽  
Ying-jie TAO ◽  
Xin HU

PttKN1 (Populus tremula × tremuloides KNOTTED1) gene belongs to the KNOXI gene family. It plays an important role in plant development, typically in meristem initiation, maintenance and organogenesis, and potentially in plant coloration. To investigate the gene functions further, it was introduced into red leaf beet by the floral dip method mediated via Agrobacterium tumefaciens. The transformants demonstrated typical phenotypes as with other PttKN1 transformants. These alterations were very different from the morphology of the wild type. Among them, morphological modification of changed color throughout the entire plant from claret of wild type to yellowish green was the highlight in those transgenic PttKN1-beet plants. The result of spraying selection showed that the PttKN1-beet plants had kanamycin resistance. PCR assay of the 35S-Promoter, NPTII and PttKN1 gene, PCR-Southern analysis of the NPTII and PttKN1 gene showed that the foreign PttKN1 gene had successfully integrated into the genome of beet plant. Furthermore, the results of RT-PCR analysis showed that the gene was ectopic expressed in transgenic plants. These data suggested that there is a correlation between the ectopic expression of PttKN1 gene and morphological alterations of beet plants. Pigment content assay showed that betaxanthins concentrations shared little difference between wild type and transgenic lines, while betacyanins content in transgenic plants was sharply decreased, indicating that the altered plant coloration of the transgenic beet plants may be caused by the changed betacyanins content. The tyrosinase study suggested that the sharply decreased of betacyanins content in transgenic plants was caused via the decreased tyrosinase level. Therefore, the reason for the altered plant coloration may be due to partial inhibition of betacyanin biosynthesis that was induced via the pleiotropic roles of PttKN1 gene.


2014 ◽  
Vol 24 (2) ◽  
pp. 197-203
Author(s):  
Quanle Xu ◽  
Nan Gao ◽  
Meiyu Ruan ◽  
Weiqiao Ding ◽  
Xin Hu ◽  
...  

2019 ◽  
Vol 24 (39) ◽  
pp. 4639-4645 ◽  
Author(s):  
Seyed Mostafa Parizadeh ◽  
Reza Jafarzadeh-Esfehani ◽  
Amir Avan ◽  
Maryam Ghandehari ◽  
Fatemeh Goldani ◽  
...  

Gastric cancer (GC) has a high mortality rate with a poor 5-year survival. Helicobacter pylori (H. pylori) is present as part of the normal flora of stomach. It is found in the gastric mucosa of more than half of the world population. This bacterium is involved in developing H. pylori-induced GC due to the regulation of different micro ribonucleic acid (miRNA or miR). miRNAs are small noncoding RNAs and are recognized as prognostic biomarkers for GC that may control gene expression. miRNAs may function as tumor suppressors, or oncogenes. In this review, we evaluated studies that investigated the ectopic expression of miRNAs in the prognosis of H. pylori positive and negative GC.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
You Shuai ◽  
Zhonghua Ma ◽  
Weitao Liu ◽  
Tao Yu ◽  
Changsheng Yan ◽  
...  

Abstract Background Gastric cancer (GC) is the third leading cause of cancer-related mortality globally. Long noncoding RNAs (lncRNAs) are dysregulated in obvious malignancies including GC and exploring the regulatory mechanisms underlying their expression is an attractive research area. However, these molecular mechanisms require further clarification, especially upstream mechanisms. Methods LncRNA MNX1-AS1 expression in GC tissue samples was investigated via microarray analysis and further determined in a cohort of GC tissues via quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays. Cell proliferation and flow cytometry assays were performed to confirm the roles of MNX1-AS1 in GC proliferation, cell cycle regulation, and apoptosis. The influence of MNX1-AS1 on GC cell migration and invasion was explored with Transwell assays. A xenograft tumour model was established to verify the effects of MNX1-AS1 on in vivo tumourigenesis. The TEAD4-involved upstream regulatory mechanism of MNX1-AS1 was explored through ChIP and luciferase reporter assays. The mechanistic model of MNX1-AS1 in regulating gene expression was further detected by subcellular fractionation, FISH, RIP, ChIP and luciferase reporter assays. Results It was found that MNX1-AS1 displayed obvious upregulation in GC tissue samples and cell lines, and ectopic expression of MNX1-AS1 predicted poor clinical outcomes for patients with GC. Overexpressed MNX1-AS1 expression promoted proliferation, migration and invasion of GC cells markedly, whereas decreased MNX1-AS1 expression elicited the opposite effects. Consistent with the in vitro results, MNX1-AS1 depletion effectively inhibited the growth of xenograft tumour in vivo. Mechanistically, TEAD4 directly bound the promoter region of MNX1-AS1 and stimulated the transcription of MNX1-AS1. Furthermore, MNX1-AS1 can sponge miR-6785-5p to upregulate the expression of BCL2 in GC cells. Meanwhile, MNX1-AS1 suppressed the transcription of BTG2 by recruiting polycomb repressive complex 2 to BTG2 promoter regions. Conclusions Our findings demonstrate that MNX1-AS1 may be able to serve as a prognostic indicator in GC patients and that TEAD4-activatd MNX1-AS1 can promote GC progression through EZH2/BTG2 and miR-6785-5p/BCL2 axes, implicating it as a novel and potent target for the treatment of GC.


Sign in / Sign up

Export Citation Format

Share Document