Direct Molecular Fishing of New Protein Partners for Human Thromboxane Synthase

Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 92-100 ◽  
Author(s):  
A. V. Svirid ◽  
◽  
P. V. Ershov ◽  
E. O. Yablokov ◽  
L. A. Kaluzhskiy ◽  
...  
Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 92-100 ◽  
Author(s):  
A. V. Svirid ◽  
◽  
P. V. Ershov ◽  
E. O. Yablokov ◽  
L. A. Kaluzhskiy ◽  
...  

Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 92-100 ◽  
Author(s):  
A. V. Svirid ◽  
P. V. Ershov ◽  
E. O. Yablokov ◽  
L. A. Kaluzhskiy ◽  
Yu. V. Mezentsev ◽  
...  

Thromboxane synthase (TBXAS1) catalyzes the isomerization reaction of prostaglandin H2 producing thromboxane A2, the autocrine and paracrine factor in many cell types. A high activity and metastability by these arachidonic acid derivatives suggests the existence of supramolecular structures that are involved in the regulation of the biosynthesis and directed translocation of thromboxane to the receptor. The objective of this study was to identify TBXAS1 protein partners from human liver tissue lysate using a complex approach based on the direct molecular fishing technique, LC-MS/MS protein identification, and protein-protein interaction validation by surface plasmon resonance (SPR). As a result, 12 potential TBXAS1 protein partners were identified, including the components regulating cytoskeleton organization (BBIP1 and ANKMY1), components of the coagulation cascade of human blood (SERPINA1, SERPINA3, APOH, FGA, and FN1), and the enzyme involved in the metabolism of xenobiotics and endogenous bioregulators (CYP2E1). SPR validation on the Biacore 3000 biosensor confirmed the effectiveness of the interaction between CYP2E1 (the enzyme that converts prostaglandin H2 to 12-HHT/thromboxane A2 proantagonist) and TBXAS1 (Kd = (4.3 0.4) 10-7 M). Importantly, the TBXAS1CYP2E1 complex formation increases fivefold in the presence of isatin (indole-2,3-dione, a low-molecular nonpeptide endogenous bioregulator, a product of CYP2E1). These results suggest that the interaction between these hemoproteins is important in the regulation of the biosynthesis of eicosanoids.


2020 ◽  
Vol 54 (6) ◽  
pp. 904-910
Author(s):  
P. V. Ershov ◽  
Yu. V. Mezentsev ◽  
E. O. Yablokov ◽  
L. A. Kaluzgskiy ◽  
A. S. Ivanov ◽  
...  

2018 ◽  
Vol 44 (6) ◽  
pp. 759-768 ◽  
Author(s):  
P. V. Ershov ◽  
Yu. V. Mezentsev ◽  
E. O. Yablokov ◽  
L. A. Kaluzhskiy ◽  
A. V. Florinskaya ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Karla Tonelli Bicalho Crosara ◽  
David Zuanazzi ◽  
Eduardo Buozi Moffa ◽  
Yizhi Xiao ◽  
Maria Aparecida de Andrade Moreira Machado ◽  
...  

Understanding proteins present in saliva and their function when isolated is not enough to describe their real role in the mouth. Due to protein-protein interactions, structural changes may occur in macromolecules leading to functional modulation or modification. Besides amylase’s function in carbohydrate breakdown, amylase can delay proteolytic degradation of protein partners (e.g., histatin 1) when complexed. Due to its biochemical characteristics and high abundance in saliva, amylase probably interacts with several proteins acting as a biological carrier. This study focused on identifying interactions between amylase and other proteins found in whole saliva (WS) using proteomic approaches. Affinity chromatography was used, followed by gel electrophoresis methods, sodium dodecyl sulfate and native, tryptic in-solution and in-gel digestion, and mass spectrometry. We identified 66 proteins that interact with amylase in WS. Characterization of the identified proteins suggests that acidic (pI < 6.8) and low molecular weight (MW < 56 kDa) proteins have preference during amylase complex formation. Most of the identified proteins present biological functions related to host protection. A new protein-amylase network was constructed using the STRING database. Further studies are necessary to investigate individualities of the identified amylase interactors. These observations open avenues for more comprehensive studies on not yet fully characterized biological function of amylase.


2019 ◽  
Vol 23 (2) ◽  
pp. 117-119 ◽  
Author(s):  
D. N. Paskalev ◽  
B. T. Galunska ◽  
D. Petkova-Valkova

Tamm–Horsfall Protein (uromodulin) is named after Igor Tamm and Franc Horsfall Jr who described it for the first time in 1952. It is a glycoprotein, secreted by the cells in the thick ascending limb of the loop of Henle. This protein will perform a number of important pathophysiological functions, including protection against uroinfections, especially caused by E. Сoli, and protection against formation of calcium concernments in the kidney. Igor Tamm (1922-1995) is an outstanding cytologist, virologist and biochemist. He is one of the pioneers in the study of viral replication. He was born in Estonia and died in the USA. In 1964 he was elected for a professorship in Rockefeller Institute for Medical Research, where has been working continuously. Since 1959, he became a head of the virology lab established by his mentor and co-author Franc Horsfall. In the course of studies on the natural inhibitor of viral replication, Tamm and Horsfall isolated and characterized biochemically a new protein named after their names. Franc Lappin Horsfall Jr (1906-1971) was a well-known clinician and virologist with remarkable achievements in internal medicine. He was born and died in the USA. He worked in the Rockefeller Hospital from 1934 to 1960, then in the Center for Cancer Research at the Sloan-Kettering Institute. Here he was a leader of a research team studying the molecular mechanisms of immunity, the effects of chemotherapy with benzimidazole compounds (together with I. Tamm), coxsackie viruses, herpes simplex virus, etc. 


Sign in / Sign up

Export Citation Format

Share Document