scholarly journals Direct Molecular Fishing of New Protein Partners for Human Thromboxane Synthase

Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 92-100 ◽  
Author(s):  
A. V. Svirid ◽  
P. V. Ershov ◽  
E. O. Yablokov ◽  
L. A. Kaluzhskiy ◽  
Yu. V. Mezentsev ◽  
...  

Thromboxane synthase (TBXAS1) catalyzes the isomerization reaction of prostaglandin H2 producing thromboxane A2, the autocrine and paracrine factor in many cell types. A high activity and metastability by these arachidonic acid derivatives suggests the existence of supramolecular structures that are involved in the regulation of the biosynthesis and directed translocation of thromboxane to the receptor. The objective of this study was to identify TBXAS1 protein partners from human liver tissue lysate using a complex approach based on the direct molecular fishing technique, LC-MS/MS protein identification, and protein-protein interaction validation by surface plasmon resonance (SPR). As a result, 12 potential TBXAS1 protein partners were identified, including the components regulating cytoskeleton organization (BBIP1 and ANKMY1), components of the coagulation cascade of human blood (SERPINA1, SERPINA3, APOH, FGA, and FN1), and the enzyme involved in the metabolism of xenobiotics and endogenous bioregulators (CYP2E1). SPR validation on the Biacore 3000 biosensor confirmed the effectiveness of the interaction between CYP2E1 (the enzyme that converts prostaglandin H2 to 12-HHT/thromboxane A2 proantagonist) and TBXAS1 (Kd = (4.3 0.4) 10-7 M). Importantly, the TBXAS1CYP2E1 complex formation increases fivefold in the presence of isatin (indole-2,3-dione, a low-molecular nonpeptide endogenous bioregulator, a product of CYP2E1). These results suggest that the interaction between these hemoproteins is important in the regulation of the biosynthesis of eicosanoids.

Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 92-100 ◽  
Author(s):  
A. V. Svirid ◽  
◽  
P. V. Ershov ◽  
E. O. Yablokov ◽  
L. A. Kaluzhskiy ◽  
...  

Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 92-100 ◽  
Author(s):  
A. V. Svirid ◽  
◽  
P. V. Ershov ◽  
E. O. Yablokov ◽  
L. A. Kaluzhskiy ◽  
...  

Author(s):  
Rajesh Kumar ◽  
Seetha Harilal ◽  
Sabitha M ◽  
Leena K Pappachan ◽  
P R Roshni ◽  
...  

: SARS-CoV-2, the novel coronavirus and the causative organism of Covid-19 pandemic wreaked havoc worldwide producing asymptomatic to symptomatic cases leading to significant morbidity and mortality even after infection. Most of the countries reported a mortality rate of 2-3 % majorly due to cardiorespiratory failures. Recent studies highlighted the neurological involvement playing a key role in cardiorespiratory failures and other symptoms such as headache, anosmia, and ageusia observed in Covid-19 patients. Studies suggests SARS-CoV-2 entry via olfactory epithelium (OE) and the expression of type 2 transmembrane serine protease (TMPRSS2) in addition to angiotensin converting enzyme 2 (ACE2) can facilitate SARS-CoV-2 neurotropism. The virus can either travel via peripheral blood vessel causing endothelial dysfunction, triggering coagulation cascade and multiple organ dysfunction or reach the systemic circulation and take a different route to the blood brain barrier (BBB), disrupting the BBB causing neuroinflammation or neuronal excitotoxicity resulting in the development of encephalitis, encephalopathy, seizures, and strokes. SARS-CoV-2 invasion on brain stem is believed to be responsible for the cardiorespiratory failures observed in Covid-19 patients. Apart from viral invasion via hematogenous route, SARS-CoV-2 neural invasion via PNS nerve terminal, resulting in viral replication and retrograde transportation to soma leading to invasion of the CNS including the brain producing neurological manifestations of the disease either in the initial stages or during the course of the disease and even in a long period post infection in many cases. The ACE2 receptors are expressed in the brain and glial cells and SARS-CoV-2 acts via neuronal as well as non-neuronal pathway. But the exact cell types involved and how they can trigger inflammatory pathways need further in-depth study for the development of targeted therapy.


2004 ◽  
Vol 287 (1) ◽  
pp. L1-L23 ◽  
Author(s):  
Jan Hirsch ◽  
Kirk C. Hansen ◽  
Alma L. Burlingame ◽  
Michael A. Matthay

Proteomics aims to study the whole protein content of a biological sample in one set of experiments. Such an approach has the potential value to acquire an understanding of the complex responses of an organism to a stimulus. The large vascular and air space surface area of the lung expose it to a multitude of stimuli that can trigger a variety of responses by many different cell types. This complexity makes the lung a promising, but also challenging, target for proteomics. Important steps made in the last decade have increased the potential value of the results of proteomics studies for the clinical scientist. Advances in protein separation and staining techniques have improved protein identification to include the least abundant proteins. The evolution in mass spectrometry has led to the identification of a large part of the proteins of interest rather than just describing changes in patterns of protein spots. Protein profiling techniques allow the rapid comparison of complex samples and the direct investigation of tissue specimens. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. These methodologies have made the application of proteomics on the study of specific diseases or biological processes under clinically relevant conditions possible. The quantity of data that is acquired with these new techniques places new challenges on data processing and analysis. This article provides a brief review of the most promising proteomics methods and some of their applications to pulmonary research.


Reproduction ◽  
2017 ◽  
Vol 154 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Kadri Rekker ◽  
Merli Saare ◽  
Elo Eriste ◽  
Tõnis Tasa ◽  
Viktorija Kukuškina ◽  
...  

The aetiology of endometriosis is still unclear and to find mechanisms behind the disease development, it is important to study each cell type from endometrium and ectopic lesions independently. The objective of this study was to uncover complete mRNA profiles in uncultured stromal cells from paired samples of endometriomas and eutopic endometrium. High-throughput mRNA sequencing revealed over 1300 dysregulated genes in stromal cells from ectopic lesions, including several novel genes in the context of endometriosis. Functional annotation analysis of differentially expressed genes highlighted pathways related to cell adhesion, extracellular matrix–receptor interaction and complement and coagulation cascade. Most importantly, we found a simultaneous upregulation of complement system components and inhibitors, indicating major imbalances in complement regulation in ectopic stromal cells. We also performed in vitro experiments to evaluate the effect of endometriosis patients’ peritoneal fluid (PF) on complement system gene expression levels, but no significant impact of PF on C3, CD55 and CFH levels was observed. In conclusion, the use of isolated stromal cells enables to determine gene expression levels without the background interference of other cell types. In the future, a new standard design studying all cell types from endometriotic lesions separately should be applied to reveal novel mechanisms behind endometriosis pathogenesis.


2020 ◽  
Vol 54 (6) ◽  
pp. 904-910
Author(s):  
P. V. Ershov ◽  
Yu. V. Mezentsev ◽  
E. O. Yablokov ◽  
L. A. Kaluzgskiy ◽  
A. S. Ivanov ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1924-1924
Author(s):  
Gourab Bhattacharjee ◽  
Jasimuddin Ahamed ◽  
Brian Pedersen ◽  
Amr El-Sheikh ◽  
Cheng Liu ◽  
...  

Abstract In vivo biopanning with phage displayed peptide libraries has generated a group of peptide probes which bind selectively to the surface of atherosclerotic plaque endothelium. The highest affinity peptide, EKO130, binds to the 78 kDa glucose regulated protein (Grp78). Grp78 has been demonstrated to play a role in numerous pathological processes as well as a possible role in the local cell surface regulation of the coagulation cascade. The goal of this study is to determine the role of Grp78 in coagulation including plasma clotting, factor Xa (Xa) generation, and tissue factor (TF) gene expression. siRNA mediated inhibition of Grp78 results in a marked increase in TF gene expression in bEND.3 endothelial cells and RAW macrophage-like cells. Antibody mediated inhibition of cell surface Grp78 results in increased TF procoagulant activity and TF-dependent Xa generation in both the endothelial and macrophage cell types. These studies are consistent with results from another laboratory demonstrating that Grp78 over-expression inhibits TF mediated initiation and support of the coagulation protease cascade. Thus, our work indicates that Grp78 suppresses TF at both the functional and molecular level by inhibiting both its thrombogenic potential and gene expression.


Sign in / Sign up

Export Citation Format

Share Document