scholarly journals Conformational Differences between Active Angiotensins and Their Inactive Precursors

Acta Naturae ◽  
2012 ◽  
Vol 4 (1) ◽  
pp. 74-77
Author(s):  
O. N. Solopova ◽  
L. P. Pozdnyakova ◽  
N. E. Varlamov ◽  
M. N. Bokov ◽  
E. V. Morozkina ◽  
...  

The peptide conformation in the context of a protein polypeptide chain is influenced by proximal amino acid residues. However, the mechanisms of this interference remain poorly understood. We studied the conformation of angiotensins 1, 2 and 3, which are produced naturally in a sequential fashion from a precursor protein angiotensinogen and contain an identical peptide core structure. Using the example of angiotensins 1, 2 and 3, it was shown that similar amino acid sequences may have significant conformational differences in various molecules. In order to assess the conformational changes, we developed a panel of high-affinity mouse monoclonal antibodies against angiotensins 1, 2 and 3 and studied their cross-reactivity in indirect and competitive ELISAs. It was found that the conformations of inactive angiotensin1 and the corresponding fragment of angiotensinogen are similar; the same is true for the conformations of active angiotensins 2 and 3, whereas the conformations of homologous fragments in the active and inactive angiotensins differ significantly.

1978 ◽  
Vol 176 (2) ◽  
pp. 359-364 ◽  
Author(s):  
Päivi Lehtovaara ◽  
Ulla Perttilä

The coupled oxidation of leghaemoglobins with O2 and ascorbate yielded oxyleghaemoglobin in the first reaction step, and the second step was the degradation of haem characterized by an A675 increase. Leghaemoglobins were degraded to biliverdin isomers specifically, depending on the structure of the protein. The main leghaemoglobin components of Glycine (soya bean) and Phaseolus (kidney bean) were degraded to biliverdin mixtures containing about 50% of the β-form, about 30% of the α-form and about 20% of the δ-isomer, whereas the leghaemoglobin I components of Vicia (broad bean) and Pisum (pea) were degraded almost exclusively to the β-isomer, with traces of the α-isomer. The amino acid sequences of Glycine and Phaseolus leghaemoglobins resemble each other, as do those of Vicia and Pisum. The site specificity of bile-pigment formation from leghaemoglobins can be tentatively explained by specific differences in the amino acid sequences at those regions of the polypeptide chain that are in the vicinity of the appropriate methine bridges. The ligand-binding site in different leghaemoglobins may be outlined on the basis of the present results, supposing that the haem is degraded when a reduction product of haem-bound O2 reacts with a methine bridge of the haem, and that the bridge specificity is regulated by hindering amino acid residues that determine the location of the bound O2. The residue phenylalanine-CD1 appears to be further away from the haem plane or in a markedly more flexible position in leghaemoglobins than in mammalian globins. The haem-bound oxygen atom B, in Fe–O(A)–O(B), seems to be free to rotate in all directions except that of the γ-bridge in Glycine and Phaseolus leghaemoglobins, but its position in Vicia and Pisum leghaemoglobin I might be restricted to the direction of the β-methine bridge.


2006 ◽  
Vol 87 (4) ◽  
pp. 909-919 ◽  
Author(s):  
Grant S. Hansman ◽  
Katsuro Natori ◽  
Haruko Shirato-Horikoshi ◽  
Satoko Ogawa ◽  
Tomoichiro Oka ◽  
...  

Human norovirus (NoV) strains cause a considerable number of outbreaks of gastroenteritis worldwide. Based on their capsid gene (VP1) sequence, human NoV strains can be grouped into two genogroups (GI and GII) and at least 14 GI and 17 GII genotypes (GI/1–14 and GII/1–17). Human NoV strains cannot be propagated in cell-culture systems, but expression of recombinant VP1 in insect cells results in the formation of virus-like particles (VLPs). In order to understand NoV antigenic relationships better, cross-reactivity among 26 different NoV VLPs was analysed. Phylogenetic analyses grouped these NoV strains into six GI and 12 GII genotypes. An antibody ELISA using polyclonal antisera raised against these VLPs was used to determine cross-reactivity. Antisera reacted strongly with homologous VLPs; however, a number of novel cross-reactivities among different genotypes was observed. For example, GI/11 antiserum showed a broad-range cross-reactivity, detecting two GI and 10 GII genotypes. Likewise, GII/1, GII/10 and GII/12 antisera showed a broad-range cross-reactivity, detecting several other distinct GII genotypes. Alignment of VP1 amino acid sequences suggested that these broad-range cross-reactivities were due to conserved amino acid residues located within the shell and/or P1-1 domains. However, unusual cross-reactivities among different GII/3 antisera were found, with the results indicating that both conserved amino acid residues and VP1 secondary structures influence antigenicity.


1992 ◽  
Vol 282 (2) ◽  
pp. 447-452 ◽  
Author(s):  
A L Newsome ◽  
J W McLean ◽  
M O Lively

Detergent-solubilized hen oviduct signal peptidase has been characterized previously as an apparent complex of a 19 kDa protein and a 23 kDa glycoprotein (GP23) [Baker & Lively (1987) Biochemistry 26, 8561-8567]. A cDNA clone encoding GP23 from a chicken oviduct lambda gt11 cDNA library has now been characterized. The cDNA encodes a protein of 180 amino acid residues with a single site for asparagine-linked glycosylation that has been directly identified by amino acid sequence analysis of a tryptic-digest peptide containing the glycosylated site. Immunoblot analysis reveals cross-reactivity with a dog pancreas protein. Comparison of the deduced amino acid sequence of GP23 with the 22/23 kDa glycoprotein of dog microsomal signal peptidase [Shelness, Kanwar & Blobel (1988) J. Biol. Chem. 263, 17063-17070], one of five proteins associated with this enzyme, reveals that the amino acid sequences are 90% identical. Thus the signal peptidase glycoprotein is as highly conserved as the sequences of cytochromes c and b from these same species and is likely to be found in a similar form in many, if not all, vertebrate species. The data also show conclusively that the dog and avian signal peptidases have at least one protein subunit in common.


Author(s):  
Long-Hui Liang ◽  
Chang-Cai Liu ◽  
Bo Chen ◽  
Long Yan ◽  
Hui-Lan Yu ◽  
...  

Both ricin and R. communis agglutinin (RCA120), belonging to the type II ribosome-inactivating proteins (RIPs-Ⅱ), are derived from the seeds of castor bean plant. They share very similar amino acid sequences, but ricin is much more toxic than RCA120. It is urgently necessary to distinguish ricin and RCA120 in response to public safety. Currently, mass spectrometric assays are well established for unambiguous identification of ricin by accurate analysis of differentiated amino acid residues after trypsin digestion. However, diagnostic peptides are relatively limited for unambiguous identification of trace ricin, especially in complex matrices. Here, we demonstrate a digestion strategy of multiple proteinases to produce novel peptide markers for unambiguous identification of ricin. LC-HRMS was used to verified the resulting peptides, among which only the peptides with uniqueness and good MS response were selected as peptide markers. Seven novel peptide markers were obtained from tandem digestion of trypsin and endoproteinase Glu-C in PBS buffer. From the chymotrypsin digestion under reduction and non-reduction conditions, eight and seven novel peptides were selected respectively. Using pepsin under pH 1~2 and proteinase K digestion, 6 and 5 peptides were selected as novel peptide markers. In conclusion, the obtained novel peptides from the established digestion methods can be recommended for the unambiguous identification of ricin during the investigation of illegal use of the toxin.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Alexander A. Zamyatnin ◽  
Tatiana A. Belozerskaya ◽  
Andrey A. Zamyatnin

Prior to this study, we discovered a protein characterized by many different amino acid sequences with the same number of amino acid residues. This turned out to be a unique cytochrome b, in which 1048 molecules out of 1689 contain 379 amino acid residues. A detailed study of the occurrence of this protein in living organisms at different taxonomic levels (from biological domains to biological orders of animals) has been carried out in the work presented here. We found that the main part of all b cytochromes is present in eukaryotes (99.2%), in biological kingdoms (95.9% in animals), in biological phylums (97.5% in chordates), and in biological classes (79.7% in mammals). Withal, this protein, containing 379 amino acid residues and characterized by many different amino acid sequences, is found only in eukaryotes (100%), only in animals (100%) and mainly in mammals (81.1%). Thus, a representative that has cytochrome b with a corresponding number of amino acid residues has not yet been identified among archaea and prokaryotes, while it is common in representatives of different biological types, classes, and orders of animals. It is believed that the structural diversity of a given protein within the same length and its one function of participation in the process of electron transfer relate to the physicochemical features of the extra- and intramembrane fragments of the polypeptide chain of this protein.


Toxins ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 393 ◽  
Author(s):  
Long-Hui Liang ◽  
Chang-Cai Liu ◽  
Bo Chen ◽  
Long Yan ◽  
Hui-Lan Yu ◽  
...  

Both ricin and R. communis agglutinin (RCA120), belonging to the type II ribosome-inactivating proteins (RIPs-Ⅱ), are derived from the seeds of the castor bean plant. They share very similar amino acid sequences, but ricin is much more toxic than RCA120. It is urgently necessary to distinguish ricin and RCA120 in response to public safety. Currently, mass spectrometric assays are well established for unambiguous identification of ricin by accurate analysis of differentiated amino acid residues after trypsin digestion. However, diagnostic peptides are relatively limited for unambiguous identification of trace ricin, especially in complex matrices. Here, we demonstrate a digestion strategy of multiple proteinases to produce novel peptide markers for unambiguous identification of ricin. Liquid chromatography-high resolution MS (LC-HRMS) was used to verify the resulting peptides, among which only the peptides with uniqueness and good MS response were selected as peptide markers. Seven novel peptide markers were obtained from tandem digestion of trypsin and endoproteinase Glu-C in PBS buffer. From the chymotrypsin digestion under reduction and non-reduction conditions, eight and seven novel peptides were selected respectively. Using pepsin under pH 1~2 and proteinase K digestion, six and five peptides were selected as novel peptide markers. In conclusion, the obtained novel peptides from the established digestion methods can be recommended for the unambiguous identification of ricin during the investigation of illegal use of the toxin.


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


1989 ◽  
Vol 54 (3) ◽  
pp. 803-810 ◽  
Author(s):  
Ivan Kluh ◽  
Ladislav Morávek ◽  
Manfred Pavlík

Cyanogen bromide fragment CB5 represents the region of the polypeptide chain of hemopexin between the fourth and fifth methionine residue (residues 232-352). It contains 120 amino acid residues in the following sequence: Arg-Cys-Ser-Pro-His-Leu-Val-Leu-Ser-Ala-Leu-Thr-Ser-Asp-Asn-His-Gly-Ala-Thr-Tyr-Ala-Phe-Ser-Gly-Thr-His-Tyr-Trp-Arg-Leu-Asp-Thr-Ser-Arg-Asp-Gly-Trp-His-Ser-Trp-Pro-Ile-Ala-His-Gln-Trp-Pro-Gln-Gly-Pro-Ser-Ala-Val-Asp-Ala-Ala-Phe-Ser-Trp-Glu-Glu-Lys-Leu-Tyr-Leu-Val-Gln-Gly-Thr-Gln-Val-Tyr-Val-Phe-Leu-Thr-Lys-Gly-Gly-Tyr-Thr-Leu-Val-Ser-Gly-Tyr-Pro-Lys-Arg-Leu-Glu-Lys-Glu-Val-Gly-Thr-Pro-His-Gly-Ile-Ile-Leu-Asp-Ser-Val-Asp-Ala-Ala-Phe-Ile-Cys-Pro-Gly-Ser-Ser-Arg-Leu-His-Ile-Met. The sequence was derived from the data on peptides prepared by cleavage of fragment CB5 by mild acid hydrolysis, by trypsin and chymotrypsin.


1994 ◽  
Vol 299 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Y Deyashiki ◽  
A Ogasawara ◽  
T Nakayama ◽  
M Nakanishi ◽  
Y Miyabe ◽  
...  

Human liver contains two dihydrodiol dehydrogenases, DD2 and DD4, associated with 3 alpha-hydroxysteroid dehydrogenase activity. We have raised polyclonal antibodies that cross-reacted with the two enzymes and isolated two 1.2 kb cDNA clones (C9 and C11) for the two enzymes from a human liver cDNA library using the antibodies. The clones of C9 and C11 contained coding sequences corresponding to 306 and 321 amino acid residues respectively, but lacked 5′-coding regions around the initiation codon. Sequence analyses of several peptides obtained by enzymic and chemical cleavages of the two purified enzymes verified that the C9 and C11 clones encoded DD2 and DD4 respectively, and further indicated that the sequence of DD2 had at least additional 16 residues upward from the N-terminal sequence deduced from the cDNA. There was 82% amino acid sequence identity between the two enzymes, indicating that the enzymes are genetic isoenzymes. A computer-based comparison of the cDNAs of the isoenzymes with the DNA sequence database revealed that the nucleotide and amino acid sequences of DD2 and DD4 are virtually identical with those of human bile-acid binder and human chlordecone reductase cDNAs respectively.


1973 ◽  
Vol 133 (4) ◽  
pp. 805-819 ◽  
Author(s):  
Francesco Bossa ◽  
Donatella Barra ◽  
Massimo Carloni ◽  
Paolo Fasella ◽  
Francesca Riva ◽  
...  

Peptides produced by thermolytic digestion of aminoethylated aspartate aminotransferase and of the oxidized enzyme were isolated and their amino acid sequences determined. Digestion by elastase of the carboxymethylated enzyme gave peptides representing approximately 40% of the primary structure. Fragments from these digests overlapped with previously reported sequences of peptides obtained by peptic and tryptic digestion (Doonan et al., 1972), giving ten composite peptides containing 395 amino acid residues. The amino acid composition of these composite peptides agrees well with that of the intact enzyme. Confirmatory results for some of the present data have been deposited as Supplementary Publication 50018 at the National Lending Library for Science and Technology, Boston Spa, Yorks. LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1973) 131, 5.


Sign in / Sign up

Export Citation Format

Share Document