scholarly journals АВТОМАТИЗАЦІЯ ВИПРОБУВАНЬ ЕЛЕКТРОННИХ РЕГУЛЯТОРОВ ГТД

2018 ◽  
pp. 108-112
Author(s):  
Дмитрий Сергеевич Бурунов ◽  
Андрей Олегович Таранишин

To ensure the required reliability of electronic regulators, a complex of tests is required, consisting of metrological studies and testing of the operation of control and monitoring algorithms. Metrological studies and calibration are carried out using standard and specialized measuring equipment. To test the control and monitoring algorithms a specialized gas turbine engine simulator with a built-in mathematical model is required. In addition, control and verification equipment and specialized software are needed. The increasing production rates caused by the large market demand in these regulators and the need to ensure reliability lead to a significant increase in labor costs and the time required for testing, which is especially important in batch production. One of the options for reducing labor costs and improving the quality of test scores is the automation of this process. Automation - the highest stage in the development of technology, which is characterized by the implementation of production management and other socially necessary processes without direct participation in them. Increasing the degree of automation of the enterprise leads to an increase in the stability of the technological process, reducing the impact of the human factor, improving the transparency of production, which ultimately positively affects the quality of finished products. The use of automation of the testing process excludes the influence of the human factor, allows for more extensive testing of the operation of the control and monitoring algorithms. When testing time is shortened, the quality and reliability indicators of Element electronic regulators produced by Element JSC are improved. As a result, the estimated effort required to test the operation of the algorithms of one electronic regulator will be reduced by 4-5 times. The main problems in testing modern electronic gas turbine engine (GTE) regulators are described. The possibility of test automation in the mass manufacturing of gas turbine regulators by the example of the electronic regulators of an engine of a family RDTs-450M. Future direction of testing development of had detected.

Author(s):  
J. A. Saintsbury ◽  
P. Sampath

The impact of potential aviation gas turbine fuels available in the near to midterm, is reviewed with particular reference to the small aviation gas turbine engine. The future course of gas turbine combustion R&D, and the probable need for compromise in fuels and engine technology, is also discussed. Operating experience to date on Pratt & Whitney Aircraft of Canada PT6 engines, with fuels not currently considered of aviation quality, is reported.


2016 ◽  
Vol 66 (2) ◽  
pp. 193 ◽  
Author(s):  
Anuradha Nayak Majila ◽  
Rajeev Jain ◽  
Chandru Fernando D. ◽  
S. Ramachandra

<p>Studies the impact response of flat Titanium alloy plate against spherical projectile for damage analysis of aero engine components using experimental and finite element techniques. Compressed gas gun has been used to impart speed to spherical projectile at various impact velocities for damage studies. Crater dimensions (diameter and depth) obtained due to impact have been compared with finite element results using commercially available explicit finite element method code LS-DYNA. Strain hardening, high strain rate and thermal softening effect along with damage parameters have been considered using modified Johnson-Cook material model of LS-DYNA. Metallographic analysis has been performed on the indented specimen. This analysis is useful to study failure analysis of gas turbine engine components subjected to domestic object damage of gas turbine engine. </p><p> </p>


2018 ◽  
pp. 83-87
Author(s):  
A. I. Mikhaylenko

The article deals with theoretical and methodological approaches and practical approaches to improve the quality of gas turbine engine diagnostics. The author presents the main results of development of the calculating method for additional ratings in the entire flow section of the gas turbine engine GTE-6,3/MS which is used by LLC «RN-Uvatneftegaz» at the Tyamkinskoye oil field of Uvat district of Tyumen region. The conclusion is drawn that an expanded series of design parameters of a gas turbine engine makes it possible to improve the quality, reliability and depth of diagnostics of both the current state of equipment and after major overhaul.


Author(s):  
E. A. Ogiriki ◽  
Y. G. Li ◽  
Th. Nikolaidis

Thermal barrier coatings (TBCs) have been widely used in the power generation industry to protect turbine blades from damage in hostile operating environment. This allows either a high turbine entry temperature (TET) to be employed or a low percentage of cooling air to be used, both of which will improve the performance and efficiency of gas turbine engines. However, with continuous increases in TET aimed at improving the performance and efficiency of gas turbines, TBCs have become more susceptible to oxidation. Such oxidation has been largely responsible for the premature failure of most TBCs. Nevertheless, existing creep life prediction models that give adequate considerations to the effects of TBC oxidation on creep life are rare. The implication is that the creep life of gas turbines may be estimated more accurately if TBC oxidation is considered. In this paper, a performance-based integrated creep life model has been introduced with the capability of assessing the impact of TBC oxidation on the creep life and performance of gas turbines. The model comprises of a thermal, stress, oxidation, performance, and life estimation models. High pressure turbine (HPT) blades are selected as the life limiting component of gas turbines. Therefore, the integrated model was employed to investigate the effect of several operating conditions on the HPT blades of a model gas turbine engine using a creep factor (CF) approach. The results show that different operating conditions can significantly affect the oxidation rates of TBCs which in turn affect the creep life of HPT blades. For instance, TBC oxidation can speed up the overall life usage of a gas turbine engine from 4.22% to 6.35% within a one-year operation. It is the objective of this research that the developed method may assist gas turbine users in selecting the best mission profile that will minimize maintenance and operating costs while giving the best engine availability.


Author(s):  
Asfaw Beyene ◽  
Terry Fredlund

Electric, pneumatic, combustion, and hydraulic systems are commonly used as gas turbine engine starters. All such starters must allow full-load engine operation to be reached within few or several minutes, depending on the size and type of the engine. This contrast in the power source of these starters imposes a variation in their operations including control procedures and safety measures such as blow-downs and on/off sequences. Driving characteristics such as dynamic and static behaviors of these starters also vary significantly, depending on the type of starter and the size or configuration (single or multiple shafts) of the engine to be started. This paper provides an overall comparative background of the commonly available gas turbine engine starters. It also presents numerical results comparing hot start characteristics of single, two, and three shaft engines with cold and hot ends. The possibility of a safe engine hot starting is a valid asset in some service areas, mainly military applications. The comparisons include starter power and gas producer speed (NGP) as the function of engine acceleration, and also starter torque as a function of the % NGP. Fuel consumption of the engine during the hot start is simulated and presented as a function of the load. The impact of an engine configuration on engine starting characteristics is implicated.


2019 ◽  
Vol 7 (1) ◽  
pp. 14-23
Author(s):  
Ēriks Ozoliņš ◽  
Ilmārs Ozoliņš ◽  
Līga Ramāna

Abstract The article describes the impact of the gas turbine engine low-pressure turbine blade shroud shelf on the blade profile stress position. Attention is focused directly on the impact of the location of the gravity centre of the shroud shelf on blade stress distribution at the three most critical points of the profile. The paper describes the details of the calculation and the required expressions provided, as well as the results of the calculation example with clear graphical dependencies.


2021 ◽  
Author(s):  
Carlos Pérez Arroyo ◽  
Jérôme Dombard ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Nicolas Odier

Abstract Optimizing the design of aviation propulsion systems using computational fluid dynamics is essential to increase their efficiency and reduce pollutant as well as noise emissions. Nowadays, this design process is increasingly aided by computational fluid dynamic methods for which and with the adequate modeling approach it is possible to perform meaningful unsteady computations of the various components of a gas-turbine engine. However, these simulations are often carried out independently of each other and only share averaged quantities at the component interfaces minimizing the impact and interactions between components. The present work investigates the interactions between fan, compressor and annular combustion chamber at takeoff conditions by simulating a 360 azimuthal degrees large-eddy simulation of over 2100 million cells of the DGEN-380 demonstrator. In that case, the domain includes: 14 fan blades; 42 outlet-guide vanes (OGV); the impeller with 11 main blades and 11 splitter blades; a radial and an axial diffuser with 22 and 55 vanes, respectively; and the annular combustion chamber with a contouring casing and 13 swirlers on the back of the chamber. At take-off conditions it is found that the compressor operates in transonic conditions in the rotating frame of reference of the impeller and a shock is formed at the leading edge of the main blades which propagates upstream towards the fan and it is perceived at half the impeller blade-passing frequency (BPF). Preliminary results also show that pressure fluctuations at the impeller BPF generated by the interaction of the impeller blades with the diffuser vanes are propagated through the axial diffuser and enter the combustion chamber through the dilution holes and the swirler. The objective of this paper is to provide a deeper analysis of the interactions between components through the use of the novel operator-based analysis called dynamic mode tracking method (DMT). Indeed, this method facilitates the analysis of three-dimensional results despite the billion-size mesh and the complexity of the simulation, since it extracts modes at specific frequencies on-the-fly within the code. The frequencies corresponding to the fan, impeller and half the impeller BPF are analyzed in the domain and compared against traditional and more computationally demanding methods like the well-known Dynamic Mode Decomposition or the Direct Fourier transform.


Sign in / Sign up

Export Citation Format

Share Document