scholarly journals Antagonistic activity of Pseudomonas fluorescens isolates against Colletotrichum capsici

2019 ◽  
Vol 7 (4) ◽  
pp. 621-626
Author(s):  
Thaveedu, S. ◽  
Sutha Raja kumar, R., ◽  
Darwin Christdhas Henry, L. ◽  
Jaiganesh, V. ◽  
Kannan, C.
2017 ◽  
Vol 6 (2) ◽  
pp. 1 ◽  
Author(s):  
Mazen Salman ◽  
Nabil Shahin ◽  
Nawaf Abu-Khalaf ◽  
Mohammad Jawabrih ◽  
Basima Abu Rumaileh ◽  
...  

Watermelon is an important summer crop in Palestine, for several decades filling the needs of local market and some Arab countries. The yield of watermelon decreased dramatically in recent years due to severe infections with the soil borne fungal pathogen Fusarium oxysporum f. sp. niveum (FON). Soil fumigation with methyl bromide was commonly applied by Palestinian farmers until it was recently legally banned. Different control mechanisms were not feasible to overcome problems caused by the disease resulting in decreased watermelon cultivation in Palestine for the past 30 years. In this work, we have experimentally shown that Pseudomonas fluorescens was efficient in controlling FON infection and allowing normal seedling growth of both the root and shoot systems. Field experiments are necessary to further confirm the efficacy of biocontrol application.


2018 ◽  
Vol 14 (4) ◽  
pp. 120
Author(s):  
Dian Syahfitri ◽  
Nisa Rachmania Mubarik ◽  
Lisdar A Manaf

Use of Chitinolytic Bacteria as Biological Control of Colletotrichum capsici on Chili PlantsColletotrichum capsici is known as the causal agent of anthracnose disease in chili plant and may cause reduction of crop yield. Chitinolytic bacteria, namely Serratia marcescens KAHN 15.12, Bacillus thuringiensis SAHA 12.12, and BAE 36 were reported to have antagonistic activity against C. capsici. Therefore, a study was conducted to determine the potential of chitinolytic bacteria on controlling C. capsici on chili plants in greenhouse experiment. Three bacterial isolates used as biocontrol agent was formulated by using talcum as carrier materials. The methodologies consisted of characterization of bacterial isolates, formulation of biocontrol agent, viability test of bacterial isolate, efficacy of biocontrol agents in the laboratory and in the greenhouse.  Disease severity in the laboratory reached 64% when chili treated with isolate formulation of BAE 36.  In the greenhouse, BAE 36 isolate formulation and consortium formulation were able to suppress infection of C. capsici; each was indicated by disease incidence of 25% and 50%, respectively. These results indicated that chitinolytic bacterial formulations could be potencial as biocontrol agents of C. capsici.


2015 ◽  
Vol 3 (1) ◽  
pp. 106-110
Author(s):  
P. Rajeswari

In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%), T. harzianum (1.5%), and P. fluorescens (2%) on the in vitro inhibition of cellulolytic enzymes of Fusarium oxysporum. Theactivity of 1,4 endoglucanases, 1,4exoglucanase Cellobiase produced by Fusariumoxysporum was higher, when compared to control.Maximum inhibition of above Cellulolytic enzymes (1, 4 endoglucanases, 1,4exoglucanase, Cellobiase) was shown by T. viride treatment wasfollowed by T. harzianum and P. fluorescens. Of all the treatments, T. viride treatment showed higher rate of inhibition of Cellulolytic enzymesof Fusarium oxysporum followed by that of T. harzianum and P. fluorescens.This present study indicates that culture filtrate of T.viride(1%)is the best biocontrol agent in the inhibition of Fusarium oxysporum causing Fusarium wilt of Arachis hypogaea .LDOI: http://dx.doi.org/10.3126/ijasbt.v3i1.12138    Int J Appl Sci Biotechnol, Vol. 3(1): 106-110 


Author(s):  
Divya Bhandhari ◽  
Amar Singh ◽  
J.V. Patel ◽  
D.K. Banyal

Background: Colocasia is cultivated globally for its edible corm and leaves. Leaf blight incited by Phytophthora colocasiae is the most destructive disease of colocasia. The current study aims at biological management of the disease. Methods: Nine Trichoderma isolates from the colocasia rhizosphere soil along with five designated isolates of Trichoderma spp. already available in the Department of Plant Pathology, CSK HPKV, Palampur were tested in vitro for antagonistic activity against P. colocasiae. Similarly, six unidentified bacterial strains isolated from colocasia phylloplane and available Pseudomonas fluorescens were evaluated for antagonistic activity against P. colocasiae under in vitro conditions. The bioagents found best under in vitro conditions were evaluated in vivo. Result: Trichoderma isolate Ti-6 was found significantly superior bioagent as it resulted in 72.9 per cent mycelial growth inhibition of P. colocasiae followed by Ti-5 (63.2%), Ti-4 (60.1%) and Ti-1 (54.5%). Amongst bacterial antagonists, Pseudomonas fluorescens gave maximum mycelial growth inhibition of 50.5 per cent followed by Pb-3 (31.4%) and Pb-6 (30.5%). The efficacy of five Trichoderma spp isolates viz., Ti-6, Ti-5, Ti-4, Ti-1, T. viride and one bacterial isolate of P. fluorescens found effective under in vitro were also evaluated in vivo using three delivery systems under net house condition. Corm treatment with bioagents was found superior for management of colocasia blight. Corm treatment with Ti-6 was found to be significantly superior to other treatments as 93.74 per cent of disease control was observed. For drenching, bioagent Ti-6 was proved best in managing blight disease (88.91%) followed by Ti-5 (88.90%). However, Ti-5 isolate of Trichoderma sp. as soil application was found superior with 90.02 per cent disease control.


2006 ◽  
Vol 19 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Francisco M. Cazorla ◽  
Simon B. Duckett ◽  
Ed T. Bergström ◽  
Sadaf Noreen ◽  
Roeland Odijk ◽  
...  

A collection of 905 bacterial isolates from the rhizospheres of healthy avocado trees was obtained and screened for antagonistic activity against Dematophora necatrix, the cause of avocado Dematophora root rot (also called white root rot). A set of eight strains was selected on the basis of growth inhibitory activity against D. necatrix and several other important soilborne phytopathogenic fungi. After typing of these strains, they were classified as belonging to Pseudomonas chlororaphis, Pseudomonas fluorescens, and Pseudomonas putida. The eight antagonistic Pseudomonas spp. were analyzed for their secretion of hydrogen cyanide, hydrolytic enzymes, and antifungal metabolites. P. chlororaphis strains produced the antibiotic phenazine-1-carboxylic acid and phenazine-1-carboxamide. Upon testing the biocontrol ability of these strains in a newly developed avocado-D. necatrix test system and in a tomato-F. oxysporum test system, it became apparent that P. fluorescens PCL1606 exhibited the highest biocontrol ability. The major antifungal activity produced by strain P. fluorescens PCL1606 did not correspond to any of the major classes of antifungal antibiotics produced by Pseudomonas biocontrol strains. This compound was purified and subsequently identified as 2-hexyl 5-propyl resorcinol (HPR). To study the role of HPR in biocontrol activity, two Tn5 mutants of P. fluorescens PCL1606 impaired in antagonistic activity were selected. These mutants were shown to impair HRP production and showed a decrease in biocontrol activity. As far as we know, this is the first report of a Pseudomonas biocontrol strain that produces HPR in which the production of this compound correlates with its biocontrol activity.


Sign in / Sign up

Export Citation Format

Share Document