scholarly journals Biological Management of Colocasia Blight Incited by Phytophthora colocasiae using Native Strains of Antagonists in North Western Himalayas

Author(s):  
Divya Bhandhari ◽  
Amar Singh ◽  
J.V. Patel ◽  
D.K. Banyal

Background: Colocasia is cultivated globally for its edible corm and leaves. Leaf blight incited by Phytophthora colocasiae is the most destructive disease of colocasia. The current study aims at biological management of the disease. Methods: Nine Trichoderma isolates from the colocasia rhizosphere soil along with five designated isolates of Trichoderma spp. already available in the Department of Plant Pathology, CSK HPKV, Palampur were tested in vitro for antagonistic activity against P. colocasiae. Similarly, six unidentified bacterial strains isolated from colocasia phylloplane and available Pseudomonas fluorescens were evaluated for antagonistic activity against P. colocasiae under in vitro conditions. The bioagents found best under in vitro conditions were evaluated in vivo. Result: Trichoderma isolate Ti-6 was found significantly superior bioagent as it resulted in 72.9 per cent mycelial growth inhibition of P. colocasiae followed by Ti-5 (63.2%), Ti-4 (60.1%) and Ti-1 (54.5%). Amongst bacterial antagonists, Pseudomonas fluorescens gave maximum mycelial growth inhibition of 50.5 per cent followed by Pb-3 (31.4%) and Pb-6 (30.5%). The efficacy of five Trichoderma spp isolates viz., Ti-6, Ti-5, Ti-4, Ti-1, T. viride and one bacterial isolate of P. fluorescens found effective under in vitro were also evaluated in vivo using three delivery systems under net house condition. Corm treatment with bioagents was found superior for management of colocasia blight. Corm treatment with Ti-6 was found to be significantly superior to other treatments as 93.74 per cent of disease control was observed. For drenching, bioagent Ti-6 was proved best in managing blight disease (88.91%) followed by Ti-5 (88.90%). However, Ti-5 isolate of Trichoderma sp. as soil application was found superior with 90.02 per cent disease control.

2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


2020 ◽  
Vol 7 (03) ◽  
Author(s):  
PREM PANDEY ◽  
G. C. SAGAR ◽  
SUNDARMAN SHRESTHA2 ◽  
HIRAKAJI MANANDHAR ◽  
RITESH K. YADAV ◽  
...  

Nine isolates of Trichoderma spp. were isolated from different agro- ecological regions of Nepal viz; Jumla, Palpa, Chitwan, Tarahara, Banke, Illam and Salyan and screened against Sclerotium rolfsii Sacc. Adreded soil borne phytopathogen causing collar rot of chickpea in chickpea; In-vitro efficacy of nine fungal antagonist (Trichoderma spp.) against Sclerotium rolfsii were screened. Pot experiment was done to find out the effective management of S. rolfsi through Tricoderma using different methods i.e. Seed treatment, soil drenching and soil application. All the tested isolates of Trichoderma spp. were found effective on mycelial growth inhibition and sclerotial parasitization of S. rolfsii. Trichoderma isolated from Palpa district showed maximum growth inhibition (%) of pathogen periodically after 48(93.78%), 72(96.00%), 96(97.96%) and 120(100.00%) hours of inoculation. Parasitized sclerotium showed minimum sclerotial germination on agar plates. Moreover, Trichoderma species isolated from Palpa districts showed second best percent mycelial growth inhibition periodically at 72(25.00%), 120(29.16%), 168(29.16%) and 216(29.16%).In pot experiment at 40 days after sowing, Seedling height was maximum in soil drenching with 30g per 100ml of water (22.27cm) and Mortality percentage of seedlings was least or highest disease control was observed in seed treated with 109cfu/ml (0.000%).


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
E. K. Wanjiku ◽  
J. W. Waceke ◽  
J. N. Mbaka

Demand for organic avocado fruits, together with stringent food safety standards in the global market, has made producers to use alternative, safe, and consumer-friendly strategies of controlling the postharvest fungal disease of avocado fruits. This study assessed the in vitro efficacy of Trichoderma spp. (T. atroviride, T. virens, T. asperellum, and T. harzianum) against isolated avocado stem-end rot (SER) fungal pathogens (Lasiodiplodia theobromae, Neofusicoccum parvum, Nectria pseudotrichia, and Fusarium solani) using a dual culture technique. The Trichoderma spp. were also evaluated singly on postharvest “Hass” avocado fruits. Spore suspension at 5 × 104 conidial/ml of the Trichoderma spp. was applied on the avocado fruits at three time points, twenty-four hours before the fungal pathogen (preinoculation), at the same time as the fungal pathogen (concurrent inoculation), and 24 hours after the fungal pathogen (postinoculation). In the in vitro study, T. atroviride showed the highest mycelial growth inhibition against N. parvum (48%), N. pseudotrichia (55%), and F. solani (32.95%), while T. harzianum had the highest mycelial growth inhibition against L. theobromae. Trichoderma asperellum was the least effective in inhibiting the mycelial growth of all the pathogens. Similarly, T. virens showed the highest mycelial growth inhibition against N. pseudotrichia at 45% inhibition. On postharvest “Hass” fruits, T. atroviride showed the highest efficacy against N. parvum, N. pseudotrichia, and F. solani in all the applications. Trichoderma virens and T. harzianum were most effective against all the pathogens during postinoculation, while Lasiodiplodia theobromae was best controlled by T. virens, T. harzianum, and T. asperellum during postinoculation. Both T. atroviride and T. harzianum present a potential alternative to synthetic fungicides against postharvest diseases of avocado fruits, and further tests under field conditions to be done to validate their efficacy. The possibility of using Trichoderma spp. in the management of SER on avocado fruits at a commercial level should also be explored.


2020 ◽  
Vol 8 (8) ◽  
pp. 1144
Author(s):  
Abhishek Anand ◽  
Delphine Chinchilla ◽  
Christopher Tan ◽  
Laurent Mène-Saffrané ◽  
Floriane L’Haridon ◽  
...  

Plants face many biotic and abiotic challenges in nature; one of them is attack by disease-causing microbes. Phytophthora infestans, the causal agent of late blight is one of the most prominent pathogens of the potato responsible for multi-billion-dollar losses every year. We have previously reported that potato-associated Pseudomonas strains inhibited P. infestans at various developmental stages. A comparative genomics approach identified several factors putatively involved in this anti-oomycete activity, among which was the production of hydrogen cyanide (HCN). Here, we report the relative contribution of HCN emission to the overall anti-Phytophthora activity of two cyanogenic Pseudomonas strains, P. putida R32 and P. chlororaphis R47. To quantify this contribution, we generated HCN-negative mutants (Δhcn) and compared their activities to those of their respective wild types in different experiments assessing P. infestans mycelial growth, zoospore germination, and infection of potato leaf disks. Using in vitro experiments allowing only volatile-mediated interactions, we observed that HCN accounted for most of the mycelial growth inhibition (57% in R47 and 80% in R32). However, when allowing both volatile and diffusible compound-mediated interactions, HCN only accounted for 1% (R47) and 18% (R32) of mycelial growth inhibition. Likewise, both mutants inhibited zoospore germination in a similar way as their respective wild types. More importantly, leaf disk experiments showed that both wild-type and Δhcn strains of R47 and R32 were able to limit P. infestans infection to a similar extent. Our results suggest that while HCN is a major contributor to the in vitro volatile-mediated restriction of P. infestans mycelial growth, it does not play a major role in the inhibition of other disease-related features such as zoospore germination or infection of plant tissues.


2015 ◽  
Vol 3 (1) ◽  
pp. 106-110
Author(s):  
P. Rajeswari

In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%), T. harzianum (1.5%), and P. fluorescens (2%) on the in vitro inhibition of cellulolytic enzymes of Fusarium oxysporum. Theactivity of 1,4 endoglucanases, 1,4exoglucanase Cellobiase produced by Fusariumoxysporum was higher, when compared to control.Maximum inhibition of above Cellulolytic enzymes (1, 4 endoglucanases, 1,4exoglucanase, Cellobiase) was shown by T. viride treatment wasfollowed by T. harzianum and P. fluorescens. Of all the treatments, T. viride treatment showed higher rate of inhibition of Cellulolytic enzymesof Fusarium oxysporum followed by that of T. harzianum and P. fluorescens.This present study indicates that culture filtrate of T.viride(1%)is the best biocontrol agent in the inhibition of Fusarium oxysporum causing Fusarium wilt of Arachis hypogaea .LDOI: http://dx.doi.org/10.3126/ijasbt.v3i1.12138    Int J Appl Sci Biotechnol, Vol. 3(1): 106-110 


Author(s):  
Laxman Prasad Balai ◽  
R. B. Singh ◽  
Asha Sinha ◽  
S. M. Yadav

Efficacy of bio agents and systemic and non-systemic fungicides @ 50, 100, 200, 250 and 500 ppm were evaluated In vitro against Alternaria tenuissima causing Alternaria blight of pigeonpea. The relative efficacy of bio agents were studied in dual culture plate method showed that Hypocrea rufa was found most effective antagonist against test pathogen followed by T. harzianum. Efficacy of six fungicides was tested in poisoned food technique. Among the six fungicides tested, mancozeb was found most effective against test pathogen followed by Chlorothalonil and Iprodione. Propineb was least effective against mycelial growth of test pathogen. Raise in concentration of fungicides was more effective in inhibiting the mycelial growth of the pathogen. Field condition studies were found out to be the effect of seed treatment, foliar spray, seed treatment+ foliar spray with six fungicides and two bio agents and their combination used as against pathogen. Artificial inoculation of mass culture of A. tenuissima was done in the inoculated seed treatment and after foliar spray on the plants sixty DAS. Amongst them twenty five treatments, combination of Mancozeb with H. rufa was found most effective in reducing the disease intensity and disease control followed by Mancozeb with T. harzianum and Mancozeb alone, respectively. While, T. harzianum alone was least effective and maximum disease intensity recorded as a compared to control followed by T. harzianum with double dose and T. harzianum and H. rufa combination treatment, respectively. In case of both seed treatment and foliar spray of Mancozeb with H. rufa was found most effective in reducing the disease intensity and disease control followed by combination of Mancozeb with T. harzianum and Mancozeb alone, respectively. Whereas, least effective and maximum disease intensity and disease control were observed T. harzianum alone as compared to control.


Author(s):  
M Bhadra ◽  
A Khair ◽  
MA Hossain ◽  
MM Sikder

An experiment was conducted to isolate a number of biocontrol agent- Trichoderma spp. from infected spawn packets of oyster mushroom at National Mushroom Development and Extension Centre, Savar, Dhaka, Bangladesh. These bio-control agents were used as antagonist against four wild wood decay fungi of Ganoderma, viz., G. lucidum-1, G. lucidum-2, G. lucidum-3, G. applanatum and two cultivated G. lucidum-4, G.lucidum-6 under in vitro condition. An in vitro trial of Trichoderma spp. against Ganoderma were performed by dual culture, by treating with volatile, non-volatile and naturally untreated metabolites of bio-control agents. In dual culture, all the Trichoderma species showed 70- 100% mycelia inhibition of G. lucidum-1 and G. lucidum-2, 55.6-100% inhibition of G. lucidum-3, 20-66.7% of G. applanatum, 100% of G. lucidum-5, 75-100% of G. lucidum-6. Effects of heat killed extracts of Trichoderma spp. on growth of G. lucidum-2 (wild) and G. lucidum-6 (cultivated) were also evaluated. Fungicides Bavistin and Dithane M-45 were also used to investigate the mycelial growth inhibition of Ganoderma spp.Int. J. Agril. Res. Innov. & Tech. 6 (2): 31-35, December, 2016


2018 ◽  
Vol 10 (3) ◽  
pp. 813-817
Author(s):  
Erayya SL ◽  
Nandani Shukla ◽  
Kahkashan Arzoo ◽  
J. Kumar

In vitro efficacy of twenty five Trichoderma isolates (twenty were TCMS series viz., TCMS 2, 4, 5, 12, 14a, 14b, 15, 16, 24, 32, 34, 36, 43, 60, 62, 64, 65, 72, 85 and 93, and five Th series; Th 1, 3, 14, 19 and 32) were ascertained for their antagonistic activity against few major plant pathogenic oomycetes namely, Phytophthora infestans, P. parasitica and Pythium aphenidermatum using dual culture technique. P. infestans was isolated from infected potato leaves and Pythium aphenidermatum from infected brinjal. P. parasitica culture was collected from Central Potato Research Institute (CPRI), Simla. The present study was conducted at Biological Control Laboratory, Department of Plant Pathology, G.B. Pant University of Agriculture and Technology, Pantnagar. All the 25 Trichodrma isolates were found significantly effective against the test pathogens. TCMS-36 and TCMS-72 were found highly effective against P. aphinidermatum with 59.57 per cent inhibition of radial growth of the fungus. Maximum reduction in mycelial growth of P. infestans was recorded with isolate TCMS-64 (60.40%) followed by TCMS-65 (59.41%), TCMS-34 (58.42%), TCMS-24, TCMS-43 and TCMS-93 with 57.43 per cent inhibition. While, maximum inhibition of P. parasitica was recorded with TCMS-4 (92.75%) followed by TCMS-36 (92.23%), TCMS-2 (91.71%), TCMS-14a (91.17%) and TCMS-32 (90.67%). The selected potential isolates may be applied to sustainable and eco-friendly management of many major crop diseases caused by the oomycetes and other fungi.


Sign in / Sign up

Export Citation Format

Share Document