scholarly journals Opinion Mining and Sentiment Analysis on Big Data

Author(s):  
Shruti Rajkumar Choudhary

<p>Opinion mining is extract subjective information from text data using tools such as NLP, text analysis etc. Automated opinion mining often uses machine learning, a type of artificial intelligence (AI), to mine text for sentiment. Opinion mining, which is also called sentiment analysis, involves building a system to collect and categorize opinions about a product.In this project the problem of sentiment analysis in twitter; that is classifying tweets according to the sentiment expressed in terms of positive, negative or neutral. Twitter is an online micro-blogging and social-networking platform which allows users to write short status updates of maximum length 140 characters. It is a rapidly expanding service with over 200 million registered users out of which 100 million are active users and half of them log on twitter on a daily basis - generating nearly 250 million tweets per day. Due to this large amount of usage we hope to achieve a reflection of public sentiment by analysing the sentiments expressed in the tweets. Analysing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections and predicting socioeconomic phenomena like stock exchange.</p>

Author(s):  
Sneha Naik ◽  
Mona Mulchandani

Opinion mining consists of many different fields like natural language processing, text mining, decision making and linguistics. Opinion mining is a type of natural language processing for tracking the mood of the public about a particular product. Opinion mining, which is also called sentiment analysis, involves building a system to collect and categorize opinions about a product. Automated opinion mining often uses machine learning, a type of artificial intelligence (AI), to mine text for sentiment. This project addresses the problem of sentiment analysis in twitter; that is classifying tweets according to the sentiment expressed in them: positive, negative or neutral. Twitter is an online micro-blogging and social-networking platform which allows users to write short status updates of maximum length 140 characters. It is a rapidly expanding service with over 200 million registered users out of which 100 million are active users and half of them log on twitter on a daily basis - generating nearly 250 million tweets per day. Due to this large amount of usage we hope to achieve a reflection of public sentiment by analysing the sentiments expressed in the tweets. Analysing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections and predicting socioeconomic phenomena like stock exchange.


Author(s):  
Dilip Singh Sisodia ◽  
Ritvika Reddy

The opinion of others significantly influences our decision-making process about any product or service. The positive or negative opinions of prospective clients or customers may promote or demote the profit margin of any business activities. Therefore, analyzing the public sentiment is important for many applications such as firms trying to find out the response of their products in the market, predicting political elections, and predicting socioeconomic phenomena such as stock exchange, sale of products, etc. With the emergence of Web 2.0 services, a wide range of online platforms including micro-blogging, social networking, and many other review platforms are available. The automated process for public sentiment analysis from a large amount of social data present on the web helps to improve customer satisfaction. This chapter discusses the process of sentiment analysis of prospective buyers of mega online sales using their posted tweets about the big billions day sale.


Due to the invention of Web 2.0, the users have become more interest to share their content day by day. The emergence of various social networking sites has added to a greater extent to these activities. These provide a very good platform for the users to share the opinions of the persons across the globe. The opinions shared by the customers on the web can have the prevalent over the service industry. Many industries such as educational institutions, researchers, business organizations are concentrating opinion mining which is also called as sentiment analysis (SA) to retrieve the views and opinions posted by the public. This paper made a survey on Sentiment Analysis (SA) which aims to discusses technical aspects of SA (techniques, types) .This paper further highlights the main challenges faced by SA. These challenges present a lot of scope for research work in the future


Author(s):  
Mrugendrasinh Rahevar ◽  
Martin Parmar ◽  
Rekha Karangiya

In recent years, the utilization of Internet has turned out to be one of the everyday activities in our life. Social networks constitute a noteworthy segment of the Web and made an upheaval. It incorporates social media, forum conversations, blogs and micro-blogs like twitter. Due to this, large numbers of comments are produced on daily basis. So, nowadays most of the researchers or analyzers are concentrating on extracting significant data from social networks in order to understand the public viewpoint. This research has been reached out outside the computer science to cover other areas like business, political and social science. Hence, Sentiment analysis and Opinion mining are popular field of research in Data mining. This paper delineates various aspects of sentiment analysis in detail inclusive of important concepts, classification, process, importance, challenges and applications. The following paper presents experiment on sentiment analysis of public opinion on demonetization in India. Sentiment analysis is performed on tweets related to demonetization in India extracted from twitter. Polarity of the opinion is observed through the experimental analysis. Through the outcome of this analysis, the sentiments of the citizens that are determined help the government in improving their decisions and work for the welfare of the citizens.


Symmetry ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 115 ◽  
Author(s):  
Yaocheng Zhang ◽  
Wei Ren ◽  
Tianqing Zhu ◽  
Ehoche Faith

The development of mobile internet has led to a massive amount of data being generated from mobile devices daily, which has become a source for analyzing human behavior and trends in public sentiment. In this paper, we build a system called MoSa (Mobile Sentiment analysis) to analyze this data. In this system, sentiment analysis is used to analyze news comments on the THAAD (Terminal High Altitude Area Defense) event from Toutiao by employing algorithms to calculate the sentiment value of the comment. This paper is based on HowNet; after the comparison of different sentiment dictionaries, we discover that the method proposed in this paper, which use a mixed sentiment dictionary, has a higher accuracy rate in its analysis of comment sentiment tendency. We then statistically analyze the relevant attributes of the comments and their sentiment values and discover that the standard deviation of the comments’ sentiment value can quickly reflect sentiment changes among the public. Besides that, we also derive some special models from the data that can reflect some specific characteristics. We find that the intrinsic characteristics of situational awareness have implicit symmetry. By using our system, people can obtain some practical results to guide interaction design in applications including mobile Internet, social networks, and blockchain based crowdsourcing.


2016 ◽  
Vol 10 (1) ◽  
pp. 87-98 ◽  
Author(s):  
Victoria Uren ◽  
Daniel Wright ◽  
James Scott ◽  
Yulan He ◽  
Hassan Saif

Purpose – This paper aims to address the following challenge: the push to widen participation in public consultation suggests social media as an additional mechanism through which to engage the public. Bioenergy companies need to build their capacity to communicate in these new media and to monitor the attitudes of the public and opposition organizations towards energy development projects. Design/methodology/approach – This short paper outlines the planning issues bioenergy developments face and the main methods of communication used in the public consultation process in the UK. The potential role of social media in communication with stakeholders is identified. The capacity of sentiment analysis to mine opinions from social media is summarised and illustrated using a sample of tweets containing the term “bioenergy”. Findings – Social media have the potential to improve information flows between stakeholders and developers. Sentiment analysis is a viable methodology, which bioenergy companies should be using to measure public opinion in the consultation process. Preliminary analysis shows promising results. Research limitations/implications – Analysis is preliminary and based on a small dataset. It is intended only to illustrate the potential of sentiment analysis and not to draw general conclusions about the bioenergy sector. Social implications – Social media have the potential to open access to the consultation process and help bioenergy companies to make use of waste for energy developments. Originality/value – Opinion mining, though established in marketing and political analysis, is not yet systematically applied as a planning consultation tool. This is a missed opportunity.


Author(s):  
Vishnu VardanReddy ◽  
Mahesh Maila ◽  
Sai Sri Raghava ◽  
Yashwanth Avvaru ◽  
Sri. V. Koteswarao

In recent years, there is a rapid growth in online communication. There are many social networking sites and related mobile applications, and some more are still emerging. Huge amount of data is generated by these sites everyday and this data can be used as a source for various analysis purposes. Twitter is one of the most popular networking sites with millions of users. There are users with different views and varieties of reviews in the form of tweets are generated by them. Nowadays Opinion Mining has become an emerging topic of research due to lot of opinionated data available on Blogs & social networking sites. Tracking different types of opinions & summarizing them can provide valuable insight to different types of opinions to users who use Social networking sites to get reviews about any product, service or any topic. Analysis of opinions & its classification on the basis of polarity (positive, negative, neutral) is a challenging task. Lot of work has been done on sentiment analysis of twitter data and lot needs to be done. In this paper we discuss the levels, approaches of sentiment analysis, sentiment analysis of twitter data, existing tools available for sentiment analysis and the steps involved for same. Two approaches are discussed with an example which works on machine learning and lexicon based respectively.


The rapid increase in technology made people across the world use social networking sites to express their opinions on a topic, product or service. The success of a healthcare service directly depends on its users. If a majority of users like the service then it is a success otherwise, the service needs to be improvised. For improvising the service, the users' opinions need to be analyzed. Manually extracting and analyzing the content present on the web is a tedious task. This gave rise to a new research area called Sentiment Analysis. It is otherwise known as opinion mining. It is being used by many health organizations to make effective decisions on their service. This paper presents the sentiment analysis of patients' opinions on hospitals which is mainly used to improve healthcare service. This is implemented using a lexicon-based methodology to analyze the sentiment.


Sign in / Sign up

Export Citation Format

Share Document