scholarly journals Face Recognition Using Livenessnet

Author(s):  
Shajahan K ◽  
Rathish Rai D ◽  
Ravishankara

Every person's face is unique, although have the same structure such as noise, eyes, lips, etc. but it can vary strikingly. It’s within this variance which lies in the distinguishing characteristics that can be used to identify one person from another. Face recognition is a popular concept which is commonly used in surveillance cameras at public places for security purposes. With the advancement of digital technologies, the demand for security to provide access control is increasing. It uses various methods of authentication to keep all details secure, such as a system focused on encrypted user name & password, smart card, biometrics, etc. The “Face Recognition using DNN with LivenessNet” presents a face recognition method based on deep neural networks for liveness. Any algorithm is considered to be efficient only if it is robust and accurate. It provides accurate results with face spoofing quickly and efficiently. The main advantage of using this technique is identifying the uniqueness in the datasets by capturing the real-time face data through different modes & jitter. It provides accurate face recognition model which can be used for safety and security purpose.

Author(s):  
Rizky Naufal Perdana ◽  
Igi Ardiyanto ◽  
Hanung Adi Nugroho

The biometric system is a security technology that uses information based on a living person's characteristics to verify or recognize the identity, such as facial recognition. Face recognition has numerous applications in the real world, such as access control and surveillance. But face recognition has a security issue of spoofing. A face anti-spoofing, a task to prevent fake authorization by breaching the face recognition systems using a photo, video, mask, or a different substitute for an authorized person's face, is used to overcome this challenge. There is also increasing research of new datasets by providing new types of attack or diversity to reach a better generalization. This paper review of the recent development includes a general understanding of face spoofing, anti-spoofing methods, and the latest development to solve the problem against various spoof types.


2011 ◽  
Vol 204-210 ◽  
pp. 216-219
Author(s):  
Hong Zhang

It's well known that the technology of human face recognition has become a hot topicin pattern recognition field. Though a lot of progress has been made by many researchersthese years, many key problems still have to be solved in order to popularize the application of face recognition because of the complexity of face recognition. The background, development and main methods of face recognition are introducedfirstly in this paper, then a face recognition method which is based on wavelet transform,KL transform and BP neural networks is used in the paper.Here the face feature extraction includes wavelet transform and KL transform.Moreover,the recognition classifier is BP neural networks.The simulation testing in the paper holds good recognition rate.


Author(s):  
Elitsa Popova ◽  
Athanasios Athanasopoulos ◽  
Efraim Ie ◽  
Nikolaos Christou ◽  
Ndifreke Nyah

Author(s):  
Sergey A. Alyamkin ◽  
Nikita A. Nikolenko ◽  
Evgeniy N. Pavlovskiy ◽  
Vladimir V. Dyubanov

Author(s):  
Kalyan Chakravarthi. M

Abstract: Recognition from faces is a popular and significant technology in recent years. Face alterations and the presence of different masks make it too much challenging. In the real-world, when a person is uncooperative with the systems such as in video surveillance then masking is further common scenarios. For these masks, current face recognition performance degrades. Still, difficulties created by masks are usually disregarded. Face recognition is a promising area of applied computer vision . This technique is used to recognize a face or identify a person automatically from given images. In our daily life activates like, in a passport checking, smart door, access control, voter verification, criminal investigation, and many other purposes face recognition is widely used to authenticate a person correctly and automatically. Face recognition has gained much attention as a unique, reliable biometric recognition technology that makes it most popular than any other biometric technique likes password, pin, fingerprint, etc. Many of the governments across the world also interested in the face recognition system to secure public places such as parks, airports, bus stations, and railway stations, etc. Face recognition is one of the well-studied real-life problems. Excellent progress has been done against face recognition technology throughout the last years. The primary concern to this work is about facial masks, and especially to enhance the recognition accuracy of different masked faces. A feasible approach has been proposed that consists of first detecting the facial regions. The occluded face detection problem has been approached using Cascaded Convolutional Neural Network (CNN). Besides, its performance has been also evaluated within excessive facial masks and found attractive outcomes. Finally, a correlative study also made here for a better understanding.


2019 ◽  
Vol 8 (1) ◽  
pp. 239-245 ◽  
Author(s):  
Shamsul J. Elias ◽  
Shahirah Mohamed Hatim ◽  
Nur Anisah Hassan ◽  
Lily Marlia Abd Latif ◽  
R. Badlishah Ahmad ◽  
...  

Attendance is important for university students. However, generic way of taking attendance in universities may include various problems. Hence, a face recognition system for attendance taking is one way to combat the problem. This paper will present an automated system that will automatically saves student’s attendance into the database using face recognition method. The paper will elaborate on student attendance system, image processing, face detection and face recognition. The face detection part will be done by using viola-jones algorithm method while the face recognition part will be carried on by using local binary pattern (LBP) method. The system will ensure that the attendance taking process will be faster and more accurate.


2020 ◽  
Vol 28 (24) ◽  
pp. 36286
Author(s):  
Zhihua Xie ◽  
Yi Li ◽  
Jieyi Niu ◽  
Ling Shi ◽  
Zhipeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document