scholarly journals Formulation and Evaluation of Transdermal Patches Containing Glimipiride

Author(s):  
Ningule Ganesh M. ◽  
Nagoba Shivappa N. ◽  
Shaikh Atiya L. ◽  
Wadulkar Raghunath D. ◽  
Deshmukh Aditye Y.

The purpose of this research was to develop a matrix-type transdermal therapeutic system containing drug Glimepride with different ratios of hydrophilic and hydrophobic polymeric systems by the solvent evaporation technique. Different concentrations of oleic acid and isopropyle myristate were used to enhance the transdermal permeation of glimipride. Matrix type transdermal patches prepared by using different ratio of Eudragit RS100, HPMC100M, by using solvent evaporation techniques. All the prepared formulation were subjected to evaluation studies i.e., weight variation, thickness, drug content, moisture content, moisture uptake, flatness and in-vitro drug release. The physicochemical compatibility of the drug and the polymers studied by differential scanning calorimetry and infrared spectroscopy suggested absence of any incompatibility. Compatibility study between drug and polymer can be done by FTIR. From the all formulation batch F3 was optimized formula. Shows linear zero order release for 24 hrs with cumulative % drug diffusion of 88.34% from 4cm2 patches. It is concluded that concentration of polymer (HPMC100M) when increases into primary layer, then In-vitro diffusion rate also increases and concentration of Eudragit Rs100 when increases, the drug diffusion decreases. It provides better controlled drug release for patch.

2021 ◽  
Vol 12 (2) ◽  
pp. 23-28
Author(s):  
Aman Sharma ◽  
Abhinav Agarwal

The objective of the current study is to improve the patient compliance and sustained drug release action by herbal medicine which can be achieved by developing alternative drug delivery system. The matrix type transdermal patches containing plumbagin were prepared by solvent evaporation method with different ratios of polymers (HPMC 50cps, PVP K29-32 and EUDRAGIT RS-100). In these matrix type transdermal patches, the PEG (Polyethylene glycol) was used as plasticizer and DMSO (Dimethyl sulfoxide) used as a penetration enhancer. The formulated patches were evaluated for physicochemical parameters like thickness, weight variation, % moisture content, % moisture uptake, % flatness, folding endurance and drug content. In vitro drug release studies were carried out by using the Franz diffusion cell. The cumulative % of drug released in 10 hours from the six batch formulations were 95.66%, 94.2%, 97.33%, 90.13%, 83.75% and 85.71%, respectively. On the basis of in-vitro drug release, formulation (HE-2) was found to be better than other formulation and these were selected for further evaluation such as anti-fungal activity and stability studies.


Author(s):  
J. R. D. Gupta ◽  
R. Irchhiaya ◽  
N. Garud ◽  
Priyanka Tripathi ◽  
Prashant Dubey ◽  
...  

Matrix type transdermal patches containing Glibenclamide were prepared using three different polymers by solvent evaporation technique. Aluminium foil cup method was used as a substrate. Polyethylene glycol (PEG) 400 was used as plasticizer and Dimethyl sulfoxide (DMSO) was used as penetration enhancer. The physicochemical parameters like weight variation, thickness, folding endurance, drug content, % moisture absorption and % moisture loss were evaluated. In vitro drug release studies and skin permeation studies were carried out using Franz diffusion cell. Cumulative amount of drug released in 12 hours from the six formulations were 55.467, 52.633, 47.157, 53.394, 49.139 and 45.597 %, respectively. The corresponding values for cumulative amount of drug permeated for the said formulation were 43.013, 40.429, 37.793, 41.522, 37.450 and 34.656 %, respectively. On the basis of in vitro drug release and skin permeation performance, formulation HP-1 was found to be better than other formulations and it was selected as the optimized formulation.


Author(s):  
Swati Hardainiyan ◽  
Krishan Kumar ◽  
Bankim Chandra Nandy ◽  
Richa Saxena

Objective: The aim of the present investigation was to form matrix type transdermal patches containing imipramine hydrochloride were prepared using two polymers by solvent evaporation technique to minimise the dose of the drug for lesser side effect and increase the bioavailability of a drug.Methods: In the present study, drug loaded matrix type transdermal films of imipramine hydrochloride were prepared by the solvent evaporation method with the help of polymers along with polyethene glycol (PEG) 400 was used as plasticizer and dimethyl sulfoxide (DMSO) was used as penetration enhancer. Drug-polymer interactions determine by FTIR and a standard calibration curve of imipramine hydrochloride was determined by using UV estimation.Results: The formulated transdermal patch by using PVP K-30, HPMC K100M showed good physical properties. All prepared formulations indicated good physical stability. The formulation F-1 gave the most suitable transdermal film with all desirable physicochemical properties. The thickness of the patches was varied from 0.263±0.67 mm to 0.301±0.61 mm, uniformity of patches showed that patches prepared by solvent evaporation while low standard deviation values ensued by thickness measurements of the film, and weights ranged between 50.5±0.75 mg and 52.15±2.15 mg, which indicates that different batches patch weights, were comparatively similar. Folding endurance was found to be>200 that is satisfactory for the patches, drug content was found to be 5.33±0.14 mg to 5.57±0.095 mg. In vitro, drug permeation studies of formulations were performed by using K-C diffusion cells using abdomen skin of the albino rat. The results were best in in-vitro skin permeation through rat skin as compared to all other formulations prepared with a hydrophilic polymer containing permeation enhancer. The formulation, F1 is considered as the best formulation, since it shows maximum in vitro drug release as 84.71±3.07 % at 24 h. The drug release kinetics studies showed that the majority of formulations were governed by Higuchi model and mechanism of release was non-Fickian mediated.Conclusion: In conclusion, controlled release transdermal drug delivery system (TDDS) patches of imipramine hydrochloride can be prepared using the polymer combinations, with plasticizer and enhancer. The release rate of drug through patched increased simultaneously as the concentration of hydrophilic polymer was increased. However, the mechanism of drug release of all formulations was non-Fickian. The properties of a film did not change during the period of study.


Author(s):  
SAMIULLAH ◽  
SYED UMER JAN ◽  
RAHMAN GUL ◽  
SYED JALALUDIN ◽  
ASMATHULLAH

Objective: This study was conducted to design a transdermal dosage form of pseudoephedrine HCL and to evaluate its release under controlled rates for sustained transdermal delivery of Pseudoephedrine. Methods: Transdermal patches were prepared by the casting evaporation method. Utilizing eudragit RL100. Patches were characterized by physical appearance, moisture content, thickness, weight variation, folding endurance, tensile strength and stability studies. Fourier transform infrared spectroscopic studies (FTIR), differential scanning calorimetry analysis (SCA) and XRD studies. Four different permeation enhancer (Tween 20, thymus oil, castor oil and eucalyptus oil) was employed. In vitro release of drugs was done in the dissolution paddle apparatus. Release studies were performed in distilled water at 37 °C. Scanning electron microscope studies were performed before and after the drug. Results: Transdermal patches with enhancers were formulated successfully with a concentration of 1% (W/V). The patches indicated stable physicochemical characteristics. FTIR, SCA and XRD Studies showed that there were no physical and chemical interactions between excipients and drugs. Results of in vitro permeation studies showed that enhancers used in this study increased drug released. The enhancers showed faster released than no enhancer. This arrangement can be shown as Tween>Eucalyptus oil>Thymus oil and castor oil. Formulation F2 is optimized among all formulations showed an 83.3% release. Conclusion: Transdermal patches of pseudoephedrine were successfully developed by using pseudo epinephrine HCL. These patches proved to be very useful for therapeutic purposes in the pharmaceutical industry without making the patients unconscious, unlike the trivial methods of treatment.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
V. J. Kapure ◽  
V. V. Pande ◽  
P. K. Deshmukh

In present investigation liquisolid compact technique is investigated as a tool for enhanced dissolution of poorly water-soluble drug Rosuvastatin calcium (RVT). The model drug RVT, a HMG-Co A reductase inhibitor was formulated in form of directly compressed tablets and liquisolid compacts; and studied for in-vitro release characteristics at different dissolution conditions. In this technique, liquid medications of water insoluble drugs in non-volatile liquid vehicles can be converted into acceptably flowing and compressible powders. Formulated systems were assessed for precompression parameters like flow properties of liquisolid system, Fourior transform infra red spectra (FTIR) analysis, X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and post compression parameters like content uniformity, weight variation, hardness and friability, disintegration test, wetting time, in vitro dissolution studies, effect of dissolution volume on drug release rate, and estimation of fraction of molecularly dispersed drug in liquid medication. As liquisolid compacts demonstrated significantly higher drug release rates, we lead to conclusion that it could be a promising strategy in improving the dissolution of poor water soluble drugs and formulating immediate release solid dosage forms.


2012 ◽  
Vol 506 ◽  
pp. 533-536
Author(s):  
Nanthida Wonglertnirant ◽  
S. Tipwichai ◽  
Praneet Opanasopit ◽  
Theerasak Rojanarata ◽  
Suwannee Panomsuk ◽  
...  

Ketoprofen transdermal patches (KTPs) were fabricated using an acrylic pressure sensitive adhesive (PSA) polymer. The influence of different factors (amount of PSA, drug content, and pressure applying on the backing membrane during preparation) on the characteristics of ketoprofen patch (thickness, W/A ratio, and adhesiveness of matrix film) and in vitro drug release behavior were investigated. The results revealed the successful fabrication and a good physical appearance of KTPs using acrylic PSA. Microscopic observations, FTIR spectra, and DSC thermograms were permitted to demonstrate that the drug was dispersed molecularly in the polymer. As the amount of PSA in the adhesive matrix was increased, the release rate of ketoprofen was decreased. Contrarily, the drug release rate was increased corresponding to the increase of ketoprofen content in the adhesive matrix. There was no significant difference in the release rate when the pressure applying on the backing membrane was varied. The kinetic of ketoprofen release from acrylic matrix type transdermal patches followed the Higuchis diffusion model.


2019 ◽  
Vol 9 (1) ◽  
pp. 190-194
Author(s):  
Rima Kassab ◽  
Dima Moussa ◽  
Cherine Saliba ◽  
Paolo Yammine

Non-aqueous oil-in-oil solvent evaporation technique is used for the preparation of polycaprolactone microspheres loaded with the antibiotic metronidazole by introducing different masses for the drug. The prepared microspheres are characterized by calculating drug encapsulation and drug loading percentages, measuring the corresponding particle size, performing FT-IR polymer-drug compatibility study and in vitro drug release. Moderate drug encapsulation values with a maximum of 34% are observed due to the low molecular weight of the drug. Microspheres had a particle size ranging between 130 and 280 µm with a spherical profile and porous structure. FT-IR study showed no interactions between the drug and the polymer. Drug release studies showed fast release rates for all the formulations with the slowest release for the highest drug loading. Keywords: polycaprolactone, metronidazole, targeted drug delivery, solvent evaporation.


Author(s):  
Dinesh V. Panpaliya ◽  
Atish Y. Sahare ◽  
Priyanka Lanje ◽  
Pooja Dhoke

The aim of the present work was to develop and evaluate of oral microsphere of Levetiracetam to reduce the frequency of dosing by achieving 12 hours sustained drug release. The microsphere formed will also mask the bitter taste of the drug and thus increase the compatibility of the drug with the patients. Levetiracetam is a second-generation anti-epileptic agent useful in the treatment of partial onset and monoclinic seizures. It has a short half life of 7 hours and its recommended dose is 500 mg twice a daily. Microspheres are suitable drug delivery system for such drug candidate. For these reasons it is must to formulate a suitable dosage form by which it will be easier to administer the dose and also to get a sustained drug release hence microsphere was prepared using solvent evaporation method. Preformulation studies were carried out to rule out any drug polymer interaction by FTIR technique. In this study formulation was done solvent evaporation method using different percentage of HPMC– K 100, HPMC- K 15 and coated with Eudragit S100. Drug, polymer and physical mixture were evaluated for in compatibility study by Fourier transforms infrared spectroscopy. All the batches of microsphere (F1 to F5) were subjected for in vitro dissolution. Microsphere was evaluated for surface morphology, micromeritics properties, entrapment efficiency and in vitro drug release. The entrapment efficiency of microsphere ranged from 71.16%-73.66%. The size of the prepared microsphere ranges between 42.8 µm to 55.64 µm which was found to increase with increase in RPM at same polymer ratio. Micromeritics studies showed good flow properties. Among the microsphere batches, F5 was observed as an optimized batch as its formulation with polymer i.e. Eudragit-S 100 and HPMC-K 100 was found to be release in sustained manner. The F-5 batch shows is 79.45% drug release at the end of 7 hrs and its stability study indicate that these microspheres were stable at selected temperature and humidity


Author(s):  
Mahendar Rupavath ◽  
K. S. K Rao

The objective of the present investigation was to identify a suitable raft forming agent and to develop raft forming stavudine matrix tablets using different rate controlling natural, semi-synthetic and synthetic polymers to achieve prolonged gastric residence time, leading to an increase in drug bioavailability and patient compliance. Various raft forming agents were used in preliminary screening. Raft forming floating tablets were developed using pullulan gum as natural rate controlling polymer, and directly compressible grades of hydroxypropyl methylcellulose (Benecel K4M DC) as semi synthetic, and Carbopol 71G as synthetic rate controlling polymers respectively and optimum concentrations of sodium-bicarbonate as gas generating agent to generate optimum buoyancy by direct compression method. Raft forming tablets were evaluated for weight variation, thickness, hardness, friability, drug content, in vitro drug release, floating buoyancy and raft strength. Drug-excipients compatibility study showed no interaction between drug and excipients. Raft forming tablets showed satisfactory results when evaluated for weight variation, thickness, hardness, friability, drug content, and raft strength. The optimized formulation was selected based on physicochemical characteristics and in vitro drug dissolution characteristics. Further, the optimized formulation was evaluated for in vivo radiographic studies by incorporating BaSO4 as radio opaque substance. Optimized formulation showed controlled and prolonged drug release profiles while floating and raft formation over the dissolution medium. Diffusion followed by erosion with raft forming drug release mechanism was observed for the formulation, indicating that dissolution media diffusion and polymer erosion played an essential role in drug release. In vivo radiographic studies revealed that the raft forming formulations remained in the stomach for 240 30 min in rabbits and indicated that gastric retention time was increased by the floating and raft forming principle, which was considered and desirable for absorption window drugs.


2020 ◽  
Vol 3 (1) ◽  
pp. 01-08
Author(s):  
Chinthakindi Shravya

The main aim of this investigation is to design and develop matrix type transdermal patches of Propranolol Hydrochloride which is an anti-hypertensive drug. These matrix type transdermal patches were prepared by “Solvent Casting Technique” using drug, HPMC E15 and Eudragit L 100 in the ratio of 1:6, 1:6.5, 1:7, 1:7.5, 1:8, 1:8.5, 1:9, 1:9.5. All formulations carried 20%v/w of PEG-600 as plasticizer. The prepared patches were characterized for various physicochemical parameters like weight, thickness, folding endurance, drug content, percent moisture content, percent moisture absorption, in vitro drug release and ex vivo permeation. Among this 1:9 ratio was found to be an Optimized formulation and patches were prepared by using permeation enhancers (lemon grass oil, Eucalyptus oil, and clove oil). The cumulative amount of drug release in 12hrs for F7 formulation showed maximum and used for that formulation skin permeation on Goat abdominal skin. FTIR studies show no interaction between drug, polymer and other excipients. The drug permeation kinetics followed “First order” and “zero order” profile with diffusion mechanism.


Sign in / Sign up

Export Citation Format

Share Document