scholarly journals OPTIMASI PROSES PEMBUATAN BIODIESEL DARI ASAM LEMAK SAWIT DISTILAT (ALSD) DAN DIMETHYL CARBONATE (DMC) MENGGUNAKAN KATALIS NOVOZYM®435

2016 ◽  
Vol 5 (1) ◽  
pp. 13-19
Author(s):  
William ◽  
Johan Senjaya ◽  
Taslim ◽  
Tjahjono Herawan ◽  
Meta Rivani

Biodiesel production has rapidly grown over the last decades, and it has attracted much attention in the market as fuel that promising substitute for petroleum diesel, because its physical and chemical properties and energy content are similar to those of petroleum diesel. The main problem in producing biodiesel is its high cost which could be reduced by use of less expensive feedstock. Therefore, in this work biodiesel is synthesized by enzymatic esterification from low quality feedstock which is unrefined and much cheaper than the refined oil, such as palm fatty acid distillate (PFAD) with dialkyl carbonate using immobilized lipase (Novozym®435). Enzymatic process has certain advantages over the chemical process, as it is less energy intensive, allowing the esterification of glycerides with high free fatty acid contents (PFAD, 85-95% FFA) and no enzymatic activity loss. Methanol replaced by dialkyl carbonate, especially DMC due to esterification (methanolysis) is close to equilibrium reaction whereas using DMC the intermediate compound immediately decomposes to carbon dioxide and an alcohol, which have been investigated. Moreover, DMC are cheap, eco-friendly chemical, non-toxic properties and widely available. Factors affecting the reaction such as DMC to PFAD molar ratio, reaction temperature, reaction time and catalyst concentration were systematically analyzed by response surface methodology (RSM) with central composite design (CCD). The optimal condition is using 6:1 molar ratio of DMC to PFAD at 60 oC, for a reaction time 3h in the presence 10wt% of catalyst (based on oil weight). The results showed that synthesis of biodiesel through enzymatic esterification using PFAD suitable for biodiesel production.

2016 ◽  
Vol 723 ◽  
pp. 610-615 ◽  
Author(s):  
Natta Pimngern ◽  
Vittaya Punsuvon

Crude coconut oil with high free fatty acid (FFA) content was used as a raw material to produce biodiesel. In this work, the esterification followed by transesterification of crude coconut oil with methanol is studied. The response surface methodology (RSM) with 5-level-3-factor central composite design (CCD) was applied to study the effect of different factors on the FFA content of esterification and the percentage of fatty acid methyl ester (FAME) conversion of transesterification. The FAME conversion was detected by proton magnetic resonance (1H-NMR) spectrometer. As a result, the optimum conditions for esterification were 6:1 of methanol-to-oil molar ratio, 0.75wt% of sulfuric acid (H2SO4) concentration and 90 min of reaction time. The optimum conditions for transesterification were 8.23:1 of methanol-to-oil molar ratio, 0.75wt% of sodium hydroxide (NaOH) concentration and 80 min of reaction time. Quadratic model equations were obtained describing the relationships between dependents and independent variables to minimize the FFA content and maximize the FAME conversion. Fuel properties of the crude coconut oil biodiesel were also examined followed ASTM and EN standards. The results showed that all properties met well with both standards.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 395 ◽  
Author(s):  
Zhe Dong ◽  
Meng-Ying Jiang ◽  
Jie Shi ◽  
Ming-Ming Zheng ◽  
Feng-Hong Huang

In this study, Candida rugosa lipase (CRL) was immobilized into modified hollow mesoporous silica (HMSS) materials with different hydrophobicity. Among propyl-(C3), phenyl-(C6), octyl-(C8), and octadecyl-(C18) modified HMSS as well as native HMSS, taking advantage of more hydrophobic microenvironment, the HMSS-C18-CRL showed exceptional performance in enzymatic esterification reaction. Using the novel HMSS-C18 with immobilized CRL (HMSS-C18-CRL), we investigated the esterification of phytosterols with polyunsaturated fat acid (PUFA) in a solvent-free system for the production of phytosterols esters. Response surface methodology (RSM) was applied to model and optimize the reaction conditions, namely, the enzyme load (5–25%), reaction time (10–110 min), molar ratio of α-linolenic acid (ALA)/phytosterols (1:1–7:1) and represented by the letters E, T, and M respectively. Best-fitting models were successfully established by multiple regressions with backward elimination. The optimum production was achieved at 70 min for reaction time, 20% based on the weight of substrate for enzyme loading, and 5.6:1 for ALA/phytosterols molar ratio. Under optimized conditions, a conversion of about 90 ± 2% was achieved. These results indicated that HMSS-C18-CRL demonstrates to be a promising catalyst and can be potentially applied in the functional lipid production.


2013 ◽  
Vol 724-725 ◽  
pp. 1154-1157 ◽  
Author(s):  
Sawittree Mulalee ◽  
Jiranan Chanprasert ◽  
Piboon Kerdpoksup ◽  
Netnapa Sawangpanya Sawangpanya ◽  
Muenduen K.M. Phisalaphong

Biodiesel has been receiving significant attention as a renewable and nonpolluting fuel. In this study, oleic acid and bioalcohols (ethanol and butanol) were used as substrates for biodiesel production. The reactions were performed in a solvent-free system using immobilized lipase (Novozym 435) as biocatalyst in a batch esterification process. The optimal conditions were 45°C, oleic acid to alcohol molar ratio of 1:2, Novozym 435 loading at 5% based on oleic acid weight and 250 rpm, in which the free fatty acid (FFA) conversion at 91.0% was obtained after 12 hours of the reaction.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 527 ◽  
Author(s):  
Gaojian Ma ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Acidic oil, which is easily obtained and with lower cost, is a potential raw material for biodiesel production. Apart from containing large quantity of FFAs (free fatty acids), acidic oil usually contains some amount of inorganic acid, glycerides and some other complex components, leading to complicated effect on lipase’s catalytic performance. Exploring the efficient process of converting acidic oil for biodiesel production is of great significance to promote the use of acidic oil. A two-step conversion process for acidic soybean oil was proposed in this paper, where sulfuric acid-mediated hydrolysis was adopted first, then the hydrolyzed free fatty acid, collected from the upper oil layer was further subject to the second-step esterification catalyzed by immobilized lipase Novozym435. Through this novel process, the negative effect caused by harmful impurities and by-product glycerol on lipase was eliminated. A fatty acid methyl ester (FAME) yield of 95% could be obtained with the acid value decreased to 4 mgKOH/g from 188 mgKOH/g. There was no obvious loss in lipase’s activity and a FAME yield of 90% could be maintained with the lipase being repeatedly used for 10 batches. This process was found to have a good applicability to different acidic oils, indicating it has great prospect for converting low quality oil sources for biodiesel preparation.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1357
Author(s):  
Ronaldo Rodrigues de Sousa ◽  
Ayla Sant’Ana da Silva ◽  
Roberto Fernandez-Lafuente ◽  
Viridiana Santana Ferreira-Leitão

The adoption of biocatalysis in solvent-free systems is an alternative to establish a greener esters production. An interesting correlation between the acid:alcohol molar ratio and biocatalyst (immobilized lipase) loading in the optimization of ester syntheses in solvent-free systems had been observed and explored. A simple mathematical tool named Substrate-Enzyme Relation (SER) has been developed, indicating a range of reaction conditions that resulted in high conversions. Here, SER utility has been validated using data from the literature and experimental assays, totalizing 39 different examples of solvent-free enzymatic esterifications. We found a good correlation between the SER trends and reaction conditions that promoted high conversions on the syntheses of short, mid, or long-chain esters. Moreover, the predictions obtained with SER are coherent with thermodynamic and kinetics aspects of enzymatic esterification in solvent-free systems. SER is an easy-to-handle tool to predict the reaction behavior, allowing obtaining optimum reaction conditions with a reduced number of experiments, including the adoption of reduced biocatalysts loadings.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1181
Author(s):  
Magdalena Rychlicka ◽  
Anna Gliszczyńska

The p-methoxycinnamic acid (p-MCA) is one of the most popular phenylpropanoids, the beneficial impact of which on the human health is well documented in the literature. This compound has shown many valuable activities including anticancer, antidiabetic, and neuro- and hepatoprotective. However, its practical application is limited by its low bioavailability resulting from rapid metabolism in the human body. The latest strategy, aimed at overcoming these limitations, is based on the production of more stability in systemic circulation bioconjugates with phospholipids. Therefore, the aim of this research was to develop the biotechnological method for the synthesis of phospholipid derivatives of p-methoxycinnamic acid, which can play a role of new nutraceuticals. We developed and optimized enzymatic interesterification of phosphatidylcholine (PC) with ethyl p-methoxycinnamate (Ep-MCA). Novozym 435 and a binary solvent system of toluene/chloroform 9:1 (v/v) were found to be the effective biocatalyst and reaction medium for the synthesis of structured p-MCA phospholipids, respectively. The effects of the other reaction parameters, such as substrate molar ratio, enzyme dosage, and reaction time, on the degree of incorporation of p-MCA into PC were evaluated by use of an experimental factorial design method. The results showed that substrate molar ratio and biocatalyst load have significant effects on the synthesis of p-methoxycinnamoylated phospholipids. The optimum conditions were: Reaction time of three days, 30% (w/w) of Novozym 435, and 1/10 substrate molar ratio PC/Ep-MCA. Under these parameters, p-methoxycinnamoylated lysophosphatidylcholine (p-MCA-LPC) and p-methoxycinnamoylated phosphatidylcholine (p-MCA-PC) were obtained in isolated yields of 32% and 3% (w/w), respectively.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 94 ◽  
Author(s):  
Samantha Pantoja ◽  
Vanessa Mescouto ◽  
Carlos Costa ◽  
José Zamian ◽  
Geraldo Rocha Filho ◽  
...  

The buriti palm (Mauritia flexuosa) is a palm tree widely distributed throughout tropical South America. The oil extracted from the fruits of this palm tree is rich in natural antioxidants. The by-products obtained from the buriti palm have social and economic importance as well, hence the interest in adding value to the residue left from refining this oil to obtain biofuel. The process of methyl esters production from the buriti oil soapstock was optimized considering acidulation and esterification. The effect of the molar ratio of sulfuric acid (H2SO4) to soapstock in the range from 0.6 to 1.0 and the reaction time (30–90 min) were analyzed. The best conditions for acidulation were molar ratio 0.8 and reaction time of 60 min. Next, the esterification of the fatty acids obtained was performed using methanol and H2SO4 as catalyst. The effects of the molar ratio (9:1–27:1), percentage of catalyst (2–6%) and reaction time (1–14 h) were investigated. The best reaction conditions were: 18:1 molar ratio, 4% catalyst and 14 h reaction time, which resulted in a yield of 92% and a conversion of 99.9%. All the key biodiesel physicochemical characterizations were within the parameters established by the Brazilian standard. The biodiesel obtained presented high ester content (96.6%) and oxidative stability (16.1 h).


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 587 ◽  
Author(s):  
Lihui Wang ◽  
Xinlong Liu ◽  
Yanjun Jiang ◽  
Liya Zhou ◽  
Li Ma ◽  
...  

Biodiesel is a promising renewable energy source that can replace fossil fuel, but its production is limited by a lack of high-efficiency catalysts for mass production and popularization. In this study, we developed a biocatalytic Pickering emulsion using multiwall carbon nanotube-immobilized Candida antarctica lipase B (CALB@PE) to produce biodiesel, with J. curcas L. seed oil and methanol as substrates. The morphology of CALB@PE was characterized in detail. A central composite design of the response surface methodology (CCD-RSM) was used to study the effects of the parameters on biodiesel yield, namely the amount of J. curcas L. seed oil (1.5 g), molar ratio of methanol to oil (1:1–7:1), CALB@PE dosage (20–140 mg), temperature (30–50 °C), and reaction time (0–24 h). The experimental responses were fitted with a quadratic polynomial equation, and the optimum reaction conditions were the methanol/oil molar ratio of 4.64:1, CALB@PE dosage of 106.87 mg, and temperature of 34.9 °C, with a reaction time of 11.06 h. A yield of 95.2%, which was basically consistent with the predicted value of 95.53%, was obtained. CALB@PE could be reused up to 10 times without a substantial loss of activity. CALB@PE exhibited better reusability than that of Novozym 435 in the process of biodiesel production.


Sign in / Sign up

Export Citation Format

Share Document