scholarly journals INTELLIGENT COOPERATIVE WEB CACHING POLICIES FOR MEDIA OBJECTS BASED ON J48 DECISION TREE AND NAÏVE BAYES SUPERVISED MACHINE LEARNING ALGORITHMS IN STRUCTURED PEER-TO-PEER SYSTEMS

Author(s):  
Hamidah Ibrahim ◽  
Waheed Yasin ◽  
Nur Izura Udzir ◽  
Nor Asilah Wati Abdul Hamid
2021 ◽  
Vol 11 (15) ◽  
pp. 6728
Author(s):  
Muhammad Asfand Hafeez ◽  
Muhammad Rashid ◽  
Hassan Tariq ◽  
Zain Ul Abideen ◽  
Saud S. Alotaibi ◽  
...  

Classification and regression are the major applications of machine learning algorithms which are widely used to solve problems in numerous domains of engineering and computer science. Different classifiers based on the optimization of the decision tree have been proposed, however, it is still evolving over time. This paper presents a novel and robust classifier based on a decision tree and tabu search algorithms, respectively. In the aim of improving performance, our proposed algorithm constructs multiple decision trees while employing a tabu search algorithm to consistently monitor the leaf and decision nodes in the corresponding decision trees. Additionally, the used tabu search algorithm is responsible to balance the entropy of the corresponding decision trees. For training the model, we used the clinical data of COVID-19 patients to predict whether a patient is suffering. The experimental results were obtained using our proposed classifier based on the built-in sci-kit learn library in Python. The extensive analysis for the performance comparison was presented using Big O and statistical analysis for conventional supervised machine learning algorithms. Moreover, the performance comparison to optimized state-of-the-art classifiers is also presented. The achieved accuracy of 98%, the required execution time of 55.6 ms and the area under receiver operating characteristic (AUROC) for proposed method of 0.95 reveals that the proposed classifier algorithm is convenient for large datasets.


2019 ◽  
Vol 1 (1) ◽  
pp. 384-399 ◽  
Author(s):  
Thais de Toledo ◽  
Nunzio Torrisi

The Distributed Network Protocol (DNP3) is predominately used by the electric utility industry and, consequently, in smart grids. The Peekaboo attack was created to compromise DNP3 traffic, in which a man-in-the-middle on a communication link can capture and drop selected encrypted DNP3 messages by using support vector machine learning algorithms. The communication networks of smart grids are a important part of their infrastructure, so it is of critical importance to keep this communication secure and reliable. The main contribution of this paper is to compare the use of machine learning techniques to classify messages of the same protocol exchanged in encrypted tunnels. The study considers four simulated cases of encrypted DNP3 traffic scenarios and four different supervised machine learning algorithms: Decision tree, nearest-neighbor, support vector machine, and naive Bayes. The results obtained show that it is possible to extend a Peekaboo attack over multiple substations, using a decision tree learning algorithm, and to gather significant information from a system that communicates using encrypted DNP3 traffic.


2021 ◽  
Vol 8 (1) ◽  
pp. 30-35
Author(s):  
Jayalakshmi R ◽  
Savitha Devi M

Agriculture sector is recognized as the backbone of the Indian economy that plays a crucial role in the growth of the nation’s economy. It imparts on weather and other environmental aspects. Some of the factors on which agriculture is reliant are Soil, climate, flooding, fertilizers, temperature, precipitation, crops, insecticides, and herb. The soil fertility is dependent on these factors and hence difficult to predict. However, the Agriculture sector in India is facing the severe problem of increasing crop productivity. Farmers lack the essential knowledge of nutrient content of the soil, selection of crop best suited for the soil and they also lack efficient methods for predicting crop well in advance so that appropriate methods have been used to improve crop productivity. This paper presents different Supervised Machine Learning Algorithms such as Decision tree, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) to predict the fertility of soil based on macro-nutrients and micro-nutrients status found in the dataset. Supervised Machine Learning algorithms are applied on the training dataset and are tested with the test dataset, and the implementation of these algorithms is done using R Tool. The performance analysis of these algorithms is done using different evaluation metrics like mean absolute error, cross-validation, and accuracy. Result analysis shows that the Decision tree is produced the best accuracy of 99% with a very less mean square error (MSE) rate.


The first step in diagnosis of a breast cancer is the identification of the disease. Early detection of the breast cancer is significant to reduce the mortality rate due to breast cancer. Machine learning algorithms can be used in identification of the breast cancer. The supervised machine learning algorithms such as Support Vector Machine (SVM) and the Decision Tree are widely used in classification problems, such as the identification of breast cancer. In this study, a machine learning model is proposed by employing learning algorithms namely, the support vector machine and decision tree. The kaggle data repository consisting of 569 observations of malignant and benign observations is used to develop the proposed model. Finally, the model is evaluated using accuracy, confusion matrix precision and recall as metrics for evaluation of performance on the test set. The analysis result showed that, the support vector machine (SVM) has better accuracy and less number of misclassification rate and better precision than the decision tree algorithm. The average accuracy of the support vector machine (SVM) is 91.92 % and that of the decision tree classification model is 87.12 %.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 126-127
Author(s):  
Lucas S Lopes ◽  
Christine F Baes ◽  
Dan Tulpan ◽  
Luis Artur Loyola Chardulo ◽  
Otavio Machado Neto ◽  
...  

Abstract The aim of this project is to compare some of the state-of-the-art machine learning algorithms on the classification of steers finished in feedlots based on performance, carcass and meat quality traits. The precise classification of animals allows for fast, real-time decision making in animal food industry, such as culling or retention of herd animals. Beef production presents high variability in its numerous carcass and beef quality traits. Machine learning algorithms and software provide an opportunity to evaluate the interactions between traits to better classify animals. Four different treatment levels of wet distiller’s grain were applied to 97 Angus-Nellore animals and used as features for the classification problem. The C4.5 decision tree, Naïve Bayes (NB), Random Forest (RF) and Multilayer Perceptron (MLP) Artificial Neural Network algorithms were used to predict and classify the animals based on recorded traits measurements, which include initial and final weights, sheer force and meat color. The top performing classifier was the C4.5 decision tree algorithm with a classification accuracy of 96.90%, while the RF, the MLP and NB classifiers had accuracies of 55.67%, 39.17% and 29.89% respectively. We observed that the final decision tree model constructed with C4.5 selected only the dry matter intake (DMI) feature as a differentiator. When DMI was removed, no other feature or combination of features was sufficiently strong to provide good prediction accuracies for any of the classifiers. We plan to investigate in a follow-up study on a significantly larger sample size, the reasons behind DMI being a more relevant parameter than the other measurements.


Author(s):  
Charalambos Kyriakou ◽  
Symeon E. Christodoulou ◽  
Loukas Dimitriou

The paper presents a data-driven framework and related field studies on the use of supervised machine learning and smartphone technology for the spatial condition-assessment mapping of roadway pavement surface anomalies. The study explores the use of data, collected by sensors from a smartphone and a vehicle’s onboard diagnostic device while the vehicle is in movement, for the detection of roadway anomalies. The research proposes a low-cost and automated method to obtain up-to-date information on roadway pavement surface anomalies with the use of smartphone technology, artificial neural networks, robust regression analysis, and supervised machine learning algorithms for multiclass problems. The technology for the suggested system is readily available and accurate and can be utilized in pavement monitoring systems and geographical information system applications. Further, the proposed methodology has been field-tested, exhibiting accuracy levels higher than 90%, and it is currently expanded to include larger datasets and a bigger number of common roadway pavement surface defect types. The proposed system is of practical importance since it provides continuous information on roadway pavement surface conditions, which can be valuable for pavement engineers and public safety.


Sign in / Sign up

Export Citation Format

Share Document