scholarly journals Assessment of WWER-1000 Core Baffle Form Alteration during Operation

2020 ◽  
pp. 13-20
Author(s):  
A. Chirkov ◽  
V. Kharchenko ◽  
S. Kobelsky

The paper illustrates the results of the computer assessment of the form alteration in WWER-1000 core baffle obtained via the solution to the coupled thermoelastoplastic task considering the strains of irradiation growth and creep. In the modeling of the contact conditions, the temperature redistribution is considered due to the incompliance of the coolant flow in the contact zone between the core baffle and in-vessel core barrel with the design conditions. The modern approaches to the modeling of strains of the irradiation growth and irradiation creep in austenite steels are used in the space-limited environment under neutron exposure and elevated temperature. The finite element analysis involves the mixed scheme of the finite element method, which allows determination of the stress-strain state with high accuracy. The calculations are performed in the two-dimensional statement for the cross-section of the core baffle with the maximum damaging dose and irradiation temperature under the condition of the generalized plane strain. The results of the calculations are presented for full-scale reactor operation and scheduled shutdown to recharge the fuel cluster at the end of core life. The data on the distribution and value of the gap between the core baffle and barrel, as well as the spacer grids of the edge fuel assemblies and reactor core baffle edges, have been obtained from the median values of the dose dependence on swelling at different temperatures in Kh18N10T austenite steel.

2011 ◽  
Vol 368-373 ◽  
pp. 489-494 ◽  
Author(s):  
Xu Lin Tang ◽  
Jian Cai ◽  
Qing Jun Chen ◽  
An He ◽  
Chun Yang

In order to study the mechanical behavior of the joint between concrete filled steel tubular column and beam with discontinuous column tube at the joint zone under axial pressure, the finite element analysis software ANSYS is adopted for parametric analysis and the analysis results are compared with experimental ones. The principal compressive stress is mainly transmitted by the inside area of the joint which is subjected to local compression if it is low, but extends to more outside areas of the joint if it is high. The radial compressive stress, which is the confined stress of the ring beam to the core concrete of the joint, keeps the same as that the width of the ring beam equal to the diameter of the core area of the joint. The vertical strain on the edge of the joint, which would lead to horizontal annular cracks in the side face of the ring beam, changes from tension in the whole height to tension only in the top part and compression in the lower part of the joint, which is consistent with the experimental phenomenon.


1973 ◽  
Vol 10 (2) ◽  
pp. 129-144 ◽  
Author(s):  
N. A. Skermer

A simple trapezoidal element is presented for use in the analysis of thin core rockfill dams with nonlinear soil parameters. Handling of nonlinear soil parameters and allowance for the intermediate principal stress in plane strain problems are discussed. The analysis of El Infiernillo rockfill dam using trapezoids in the core and transitions, and variable Young's modulus and Poisson's ratio, reveals the transfer of stress that takes place around the core. Comparisons of strain observations at El Infiernillo Dam with results from the analysis are good, except in zones of compacted rockfill. It appears that the actual stiffness of compacted granular fills may be seriously underestimated, if soil parameters are based on data obtained from triaxial tests on normally consolidated samples. A fundamental understanding of soil deformation behavior would lead to an improvement in the finite element analysis of soil structure.


2004 ◽  
Vol 04 (04) ◽  
pp. 579-588 ◽  
Author(s):  
S. ARUL JAYACHANDRAN ◽  
A. SOUNDARARAJAN ◽  
S. SEETHARAMAN ◽  
G. M. SAMUEL KNIGHT

This paper deals with the linear stability analysis of sandwich plates modeled as thin plates resting on elastic media. To compute the elastic buckling coefficient of sandwich plates, equations have been presented in the literature by using a coefficient R, which relates the rigidity of facing to the core. In the finite element analysis, if the sandwich plates are to be modeled as plates supported by Winkler elastic springs, the relative rigidity R cannot be directly used to represent the stiffness of the Winkler springs. Instead, the stiffness of the core has to be expressed as a modulus of subgrade/core reaction. Furthermore, the R value cannot be directly used in a finite element postbuckling analysis of sandwich plates. In this study, an empirical relation between modulus of core reaction and the R value is established. This is then used in the finite element computation of buckling loads of sandwich panels. This modulus of core reaction can be directly used in the linear buckling analysis of sandwich plates as well as the postbuckling analysis using finite elements.


2012 ◽  
Vol 229-231 ◽  
pp. 919-922
Author(s):  
Bao Dong Bai ◽  
Guo Hui Yang ◽  
Bing Yin Qu ◽  
Jian Zhang

In this paper, the modal analysis was carried out on the core and cavity of a 160KVA dry-type transformer based on the finite element analysis software of ANSYS. And the simulation results of the natural frequencies and modal shapes were obtained, which provided a theoretical guidance to the design of the transformer structure, and were meaningful to reduce the vibration and noise level of the transformer.


2017 ◽  
Vol 739 ◽  
pp. 231-234
Author(s):  
Tung Sheng Yang ◽  
Kui Chih Luo

The friction factor between 6061 aluminum alloy and die material (SKD61) are determined at different temperatures by using ring compression test which are carried out on a material testing machine. Mechanical properties and fiction factor are then applied to the finite element analysis of the wheel forging for different elevated temperature. Maximum forging load, effective stress and temperature distribution are determined of the wheel forging, using the finie element analysis. Finally, the wheel parts are formed by the forging machine under the conditions using finite element analysis.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


Sign in / Sign up

Export Citation Format

Share Document