scholarly journals Heating and cooling requirement of an office building and urban rooftop greenhouse

Author(s):  
Andrea Vickers

Urban agriculture is an important step towards food security in cities where rooftop space is abundant, and underused. This research addresses the potential impact of adding a rooftop greenhouse to a six storey, detached office building on the total heating and cooling energy consumption of both structures operated year‐round, using IES‐VE simulation software. Several variables including the level of insulation between the office building and greenhouse, additional thermal mass, the greenhouse envelope and greenhouse internal loads were tested to observe trends that suggest an impact on the system’s conditioning energy due to the presence of the greenhouse. Overall, it was found to be most likely that the greatest energy savings for an integrated office building and rooftop greenhouse would be achieved with the highest resistance greenhouse envelope possible, which may be limited by the light needs of plants grown in the greenhouse, and incorporation of thermal mass in the greenhouse.

2021 ◽  
Author(s):  
Andrea Vickers

Urban agriculture is an important step towards food security in cities where rooftop space is abundant, and underused. This research addresses the potential impact of adding a rooftop greenhouse to a six storey, detached office building on the total heating and cooling energy consumption of both structures operated year‐round, using IES‐VE simulation software. Several variables including the level of insulation between the office building and greenhouse, additional thermal mass, the greenhouse envelope and greenhouse internal loads were tested to observe trends that suggest an impact on the system’s conditioning energy due to the presence of the greenhouse. Overall, it was found to be most likely that the greatest energy savings for an integrated office building and rooftop greenhouse would be achieved with the highest resistance greenhouse envelope possible, which may be limited by the light needs of plants grown in the greenhouse, and incorporation of thermal mass in the greenhouse.


Author(s):  
Alexandre Pépin ◽  
Louis Gosselin ◽  
Jonathan Dallaire

An office building located in Quebec City (Canada) with different envelope assemblies has been simulated in order to determine the energy consumption and thermal comfort that they provide. The resistance, thermal mass, and materials (concrete, cross-laminated timbers (CLT), and light-frame) are varied in a series of 164 different scenarios and the energy intensities for heating and cooling determined in each case, along with the discomfort index. Results show that the materiel used to provide thermal mass has a larger impact on comfort and energy consumption than the value of the thermal mass thickness itself. It was also attempted to correlate the performance of the envelope and its thermal mass with three dynamic thermal properties (i.e., dynamic transmittance, areal heat capacity, and decrement factor). Apart from thermal resistance, the internal areal heat capacity appeared to be the most important variable to explain variations of performance of the envelope.


1990 ◽  
Vol 112 (4) ◽  
pp. 273-279 ◽  
Author(s):  
M. Judson Brown

Based on results from a one-year intensive monitoring project of a Northern New York commercial building with energy-conserving design features, a thermal storage project was undertaken to optimize the design of a thermal mass storage system for a moderately sized commercial building and transfer the technology to the commercial building sector. A generic commercial building design of 27,000 square feet (2508 m2) was selected for the optimization project. Several different types of thermal mass designs were considered as potentially practical for a commercial building. These included a “sandmass” design such as the mass incorporated in the previously monitored commercial building mentioned above, a foundation slab of sufficient thickness to serve as a significant building thermal mass, and the use of poured cement in interior wall and floor construction. Five different office building thermal designs were selected which represented various thermal storage features and two different building insulation levels (R10 and R20). Energy performance of the five thermal designs was modeled in building energy simulations using DOE 2.1C (Department of Energy 2.1C) energy simulation code. Results of the simulations showed a reduction in peak heating and cooling loads would be experienced by the HVAC equipment. The reduction in peak heating and cooling loads was anticipated because thermal mass within a building serves to average peak heating and cooling loads due to the capacity of the thermal mass to store and release heat from all building heat sources over a period of time. Peak heating loads varied from 1972 kBtuh (578 kW) for the R-10 light construction base case to a minimum of 980 kBtuh (287 kW) for the R-20 heavy construction sandmass storage case. Peak cooling loads dropped from 772 kBtuh (226 kW) for the R-20 light construction case to 588 kBtuh (172 kW) for the R-20 heavy construction sandmass storage case. Results of the simulations also showed annual energy savings for the high thermal mass designs. Energy savings varied from 20 percent [16.0 kBtu/ft2 (50 kWh/m2)] for the R-10 high thermal mass design in comparison to its base case to 18 percent [12.2 kBtu/ft2 (39 kWh/m2)] for the R-20 high thermal mass design in comparison to its base case. The annual energy savings are due to the ability of the thermal mass to absorb heat from all sources of heat generation (lights, occupancy, solar, and auxiliary) during occupied periods and release the heat during unoccupied periods. An optimized thermal design was developed based on results from the DOE 2.1C simulations. The initial cost for the optimized thermal storage design is lower than the initial costs for light construction office buildings, since the lower initial cost of the down-sized HVAC system for the optimized thermal storage design more than offsets the increased cost of wall and floor systems incorporated in the optimized design. Annual energy savings are realized from the high thermal mass system in both cooling and heating modes due to the interaction of building HVAC systems operation in the simulated 27000 ft2 (2508 m2) office building. Annual operating savings of $3781 to $4465 per year are estimated based on simulation results.


2021 ◽  
Author(s):  
Tasnuva Ahmed

The building industry is striving for environmental friendly and energy efficient facility developments, as we have used most of our natural resources for comfortable living. Therefore energy efficient houses are very significant to reduce energy consumption. Thermal mass can be used as one of the many techniques of energy efficiency in the housing industry. Thermal mass can store heat in it which can be released at a later time. This behaviour of thermal mass can play a significant role in heating and cooling energy consumption of houses. This study investigates the impact of thermal mass on heating and cooling energy performance of a detached house and a row attached house, which are two main types of housing in Canada. Energy Plus simulation software has been used in the study. Also the study includes two different climatic conditions in Canada, such as Toronto and Vancouver, to envision how thermal mass behaviour changes with climates. All these different studies show thermal mass has significant impact on reduced energy consumption (15% savings in Vancouver for CCHT house) and lowering indoor air temperature. Other strategies such as insulation high R value, increased south face glazing and reduced glazing U value have been integrated with thermal mass to see energy performance in both climates. It hows more energy reduction than only thermal mass strategy. For instance, in CCHT house insulation high R value with concrete high mass reduces maximum 27% of total energy for Vancouver location.


2021 ◽  
Author(s):  
Tasnuva Ahmed

The building industry is striving for environmental friendly and energy efficient facility developments, as we have used most of our natural resources for comfortable living. Therefore energy efficient houses are very significant to reduce energy consumption. Thermal mass can be used as one of the many techniques of energy efficiency in the housing industry. Thermal mass can store heat in it which can be released at a later time. This behaviour of thermal mass can play a significant role in heating and cooling energy consumption of houses. This study investigates the impact of thermal mass on heating and cooling energy performance of a detached house and a row attached house, which are two main types of housing in Canada. Energy Plus simulation software has been used in the study. Also the study includes two different climatic conditions in Canada, such as Toronto and Vancouver, to envision how thermal mass behaviour changes with climates. All these different studies show thermal mass has significant impact on reduced energy consumption (15% savings in Vancouver for CCHT house) and lowering indoor air temperature. Other strategies such as insulation high R value, increased south face glazing and reduced glazing U value have been integrated with thermal mass to see energy performance in both climates. It hows more energy reduction than only thermal mass strategy. For instance, in CCHT house insulation high R value with concrete high mass reduces maximum 27% of total energy for Vancouver location.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


2012 ◽  
Vol 516-517 ◽  
pp. 1139-1143
Author(s):  
Ke Chun Sun ◽  
Wei Jun Zhang

Chongqing weather conditions as the representative, energy simulation software DesT-c Chongqing office building energy simulation analysis, simulated natural building under different ventilation conditions at room temperature, the energy consumption of building cooling load and air-conditioning system changes, with an emphasis on energy-saving effect of the night ventilation; The study showed that in Chongqing reasonable use of ventilation reduce building natural room temperature to a certain extent; Sensitive indicators of building air conditioning energy consumption than the heating energy consumption of ventilation was significantly; Night ventilation when the number of ventilators is less than 5 times / h, the energy saving effect is very significant.


2019 ◽  
Vol 9 (3) ◽  
pp. 229-245
Author(s):  
Sofiane Rahmouni ◽  
Rachid Smail

Purpose The purpose of this paper is to achieve the national strategic agenda’s criteria that aim for accomplishing sustainable buildings by estimating the effects of energy efficiency measures in order to reduce energy consumption and CO2 emission. Design/methodology/approach A design approach has been developed based on simulation software and a modeled building. Therefore, a typical office building is considered for testing five efficiency measures in three climatic conditions in Algeria. This approach is conducted in two phases: first, the analysis of each measure’s effect is independently carried out in terms of cooling energy and heating energy intensities. Then, a combination of optimal measures for each climate zone is measured in terms of three sustainable indicators: final energy consumption, energy cost saving and CO2 emission. Findings The results reveal that a combination of optimal measures has a substantial impact on building energy saving and CO2 emission. This saving can rise to 41 and 31 percent in a hot and cold climate, respectively. Furthermore, it is concluded that obtaining higher building performance, different design alternatives should be adapted to the climate proprieties and the local construction materials must be applied. Originality/value This study is considered as an opportunity for achieving the national strategy, as it may contribute in improving office building performance and demonstrating a suitable tool to assist stakeholders in the decision making of most important parameters in the design stage for new or retrofit buildings.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6038
Author(s):  
Mariano Gallo ◽  
Marilisa Botte ◽  
Antonio Ruggiero ◽  
Luca D’Acierno

We propose a model for optimising driving speed profiles on metro lines to reduce traction energy consumption. The model optimises the cruising speed to be maintained on each section between two stations; the functions that link the cruising speed to the travel time on the section and the corresponding energy consumption are built using microscopic railway simulation software. In addition to formulating an optimisation model and its resolution through a gradient algorithm, the problem is also solved by using a simulation model and the corresponding optimisation module, with which stochastic factors may be included in the problem. The results are promising and show that traction energy savings of over 25% compared to non-optimised operations may be achieved.


Sign in / Sign up

Export Citation Format

Share Document