scholarly journals Role of PIKfyve in macrophage and neutrophil immune response

2021 ◽  
Author(s):  
Roya Monica Dayam

Solid particles such as pathogens, dying cells, and debris are engulfed by macrophages and neutrophils and sequestered into a phagosome. Phagosomes fuse with early and late endosomes and ultimately with lysosomes to mature into phagolysosomes, a process known as phagosome maturation. The formation of highly acidic and degradative phagolysosomes plays an important role in degradation of the internalized particle. We employed siRNA and pharmacological tools to demonstrate that phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2], synthesized by the PIKfyve lipid kinase, is required for phagosome maturation. However, the mechanism by which PI(3,5)P2 controls phagosome maturation remained uncharacterized. We hypothesized that PI(3,5)P2 may control phagosome-lysosome fusion partly by stimulating TRPML1, a lysosomal Ca2+ channel gated by PI(3,5)P2. Upon opening of the channel, lysosomal Ca2+ would diffuse and trigger phagosome-lysosome fusion since Ca2+ is known to induce membrane fusion post-docking of SNARE proteins. In addition, we also demonstrated that the lipid kinase PIKfyve coordinates the neutrophils immune response by controlling phagosome maturation and regulating Rac GTPase activity. PIKfyve produces both PI(3,5)P2 and phosphatidylinositol-5-phosphate (PI5P); therefore, it might control phagosome maturation through production of PI(3,5)P2 and activation of TRPML1 as well as regulates ROS production and chemotaxis through synthesis of PI5P, which leads to the activation of Tiam1, and Rac GTPase.

2021 ◽  
Author(s):  
Roya Monica Dayam

Solid particles such as pathogens, dying cells, and debris are engulfed by macrophages and neutrophils and sequestered into a phagosome. Phagosomes fuse with early and late endosomes and ultimately with lysosomes to mature into phagolysosomes, a process known as phagosome maturation. The formation of highly acidic and degradative phagolysosomes plays an important role in degradation of the internalized particle. We employed siRNA and pharmacological tools to demonstrate that phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2], synthesized by the PIKfyve lipid kinase, is required for phagosome maturation. However, the mechanism by which PI(3,5)P2 controls phagosome maturation remained uncharacterized. We hypothesized that PI(3,5)P2 may control phagosome-lysosome fusion partly by stimulating TRPML1, a lysosomal Ca2+ channel gated by PI(3,5)P2. Upon opening of the channel, lysosomal Ca2+ would diffuse and trigger phagosome-lysosome fusion since Ca2+ is known to induce membrane fusion post-docking of SNARE proteins. In addition, we also demonstrated that the lipid kinase PIKfyve coordinates the neutrophils immune response by controlling phagosome maturation and regulating Rac GTPase activity. PIKfyve produces both PI(3,5)P2 and phosphatidylinositol-5-phosphate (PI5P); therefore, it might control phagosome maturation through production of PI(3,5)P2 and activation of TRPML1 as well as regulates ROS production and chemotaxis through synthesis of PI5P, which leads to the activation of Tiam1, and Rac GTPase.


2021 ◽  
Author(s):  
Grace H.E. Kim

Macrophages engulf pathogens into phagosomes for degradation through a process known as phagocytosis. Nascent phagosomes progressively mature and fuse with early and late endosomes and lysosomes to form phagolysosomes, where pathogens are degraded by hydrolytic enzymes. Phosphatidylinositol-3-phosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] are signaling lipids that recruit a unique set of effector proteins involved in distinct stages of membrane traffic to govern the function of early and late endosomes, respectively. Phagosome maturation requires the transient expression of PtdIns(3)P on early phagosomal membranes. Subsequently, PtdIns(3)P can be converted to PtdIns(3,5)P2 by the lipid kinase PIKfyve. Thus, it remains unclear if the role of PtdIns(3)P in phagosome maturation is direct and/or indirect, through the synthesis of PtdIns(3,5)P2. The role of PtdIns(3,5)P2 in the endosomal system in macrophages also requires further investigation. My thesis employs a pharmacological approach to address the role of PIKfyve in macrophage biology. In general, PtdIns(3,5)P2 appears to principally coordinate the later stages of endosome and phagosome maturation.


2021 ◽  
Author(s):  
Grace H.E. Kim

Macrophages engulf pathogens into phagosomes for degradation through a process known as phagocytosis. Nascent phagosomes progressively mature and fuse with early and late endosomes and lysosomes to form phagolysosomes, where pathogens are degraded by hydrolytic enzymes. Phosphatidylinositol-3-phosphate [PtdIns(3)P] and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] are signaling lipids that recruit a unique set of effector proteins involved in distinct stages of membrane traffic to govern the function of early and late endosomes, respectively. Phagosome maturation requires the transient expression of PtdIns(3)P on early phagosomal membranes. Subsequently, PtdIns(3)P can be converted to PtdIns(3,5)P2 by the lipid kinase PIKfyve. Thus, it remains unclear if the role of PtdIns(3)P in phagosome maturation is direct and/or indirect, through the synthesis of PtdIns(3,5)P2. The role of PtdIns(3,5)P2 in the endosomal system in macrophages also requires further investigation. My thesis employs a pharmacological approach to address the role of PIKfyve in macrophage biology. In general, PtdIns(3,5)P2 appears to principally coordinate the later stages of endosome and phagosome maturation.


2017 ◽  
Vol 199 (6) ◽  
pp. 2096-2105 ◽  
Author(s):  
Roya M. Dayam ◽  
Chun X. Sun ◽  
Christopher H. Choy ◽  
Gemma Mancuso ◽  
Michael Glogauer ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 704-704
Author(s):  
Sang Hee Min ◽  
Aae Suzuki ◽  
Jessica Guzman ◽  
Lehn Weaver ◽  
Charles S. Abrams

Abstract Macrophages are professional phagocytes essential for host defense and tissue homeostasis. To carry out these functions, macrophages depend upon the degradative activity of their lysosomes. Recent studies identified the endosomal phosphoinositide PI(3,5)P2, which is synthesized by the lipid kinase PIKfyve, as a key regulator of the endolysosomal trafficking. In our previous work, we demonstrated that PIKfyve is vital for lysosomal homeostasis in platelets, and PIKfyve deficiency in platelets could lead to arterial thrombosis and inflammation in vivo. Here, we investigated the role of PIKfyve in macrophages given the critical importance of lysosomal functions in macrophages. To address the role of PIKfyve in macrophages, we paired our previously generated PIKfyvefl/flmice with mice that are transgenic for the myeloid-specific LysM-Cre. To validate the tissue specificity of LysM-Cre, PIKfyvefl/fl LysM-Cre mouse was crossed with the Cre-dependent YFP reporter mouse. The YFP expression induced by LysM-Cre was present predominantly in monocytes and neutrophils, and minimally in lymphocytes. The expression of PIKfyve protein in the macrophages isolated by immunomagnetic beads was confirmed to be normal in wild-type mice, partially reduced in the PIKfyvefl/+ LysM-Cre mice, and undetectable in the PIKfyvefl/fl LysM-Cre mice. PIKfyvefl/fl LysM-Cre mice were born at a normal mendelian ratio. However, as they matured, they developed abdominal distention due to severe hepatosplenomegaly. Histological analysis of their liver and spleen demonstrated tissue infiltration of vacuolated cells that stained with F4/80, a marker of murine macrophages. Immunophenotyping analysis of the peripheral blood demonstrated elevated counts of monocytes and neutrophils, but decreased number of lymphocytes in the PIKfyvefl/fl LysM-Cre mice. In addition, PIKfyvefl/fl LysM-Cre mice had increased serum levels of inflammatory cytokines. Together, these data indicate that PIKfyve ablation in myeloid cells could induce severe systemic inflammation in vivo. To study the effects of PIKfyve ablation in lysosome biogenesis and functions in macrophages, we examined F4/80-positive macrophages from the control and PIKfyvefl/fl LysM-Cremice. PIKfyve-null macrophages displayed enlarged cytoplasmic vacuoles that immunostained for LAMP1 (a marker of late endosomes and lysosomes.) They also expressed increased levels of several lysosomal proteins including LAMP1, Cathepsin D and M6PR that were analyzed by immunoblotting. Interestingly, the amount of procathepsin D was greater than the amount of mature cathepsin D. In addition, neither of these enzymes were localized within the enlarged vesicles of PIKfyve-null macrophages. These data suggest that PIKfyve is essential for lysosomal maturation. Moreover, despite normal acidification, the proteolytic activity within the enlarged late endosomes/lysosomes of PIKfyve-null macrophages was significantly reduced. The expression of autophagosome marker LC3-II was also elevated, suggesting that the degradation of autophagosomes is also impaired in PIKfyve-null macrophages. Together, these data indicate that PIKfyve is essential to maintain the normal structure, biogenesis, trafficking, maturation and functions of lysosomes in macrophages. The transcription factor TFEB is a recently identified master regulator of lysosomal gene expression. In normal conditions, mTORC1 mediates phosphorylation of TFEB to keep it inactive and localized in the cytoplasm. Interestingly, PIKfyve-null macrophages had reduced mTORC1 activation as shown by decreased levels of phospho-S6 and phopsho-4EBP1. Unexpectedly, PIKfyve-null macrophages had reduced levels of full-length TFEB (both phosphorylated and dephosphorylated forms) and significantly increased levels of smaller variants of TFEB truncated of their N-terminal ends. The role of these processed forms of TFEB is currently unknown. Together, these findings suggest that PIKfyve deficiency may up-regulate the expression of lysosomal proteins via mTORC1 and TFEB pathways. In summary, our study demonstrates that PIKfyve is essential for lysosomal homeostasis in macrophages and demonstrates a previously unrecognized link between PIKfyve signaling and TFEB pathway. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
pp. 49-57
Author(s):  
S. V. Orlova ◽  
E. A. Nikitina ◽  
L. I. Karushina ◽  
Yu. A. Pigaryova ◽  
O. E. Pronina

Vitamin A (retinol) is one of the key elements for regulating the immune response and controls the division and differentiation of epithelial cells of the mucous membranes of the bronchopulmonary system, gastrointestinal tract, urinary tract, eyes, etc. Its significance in the context of the COVID‑19 pandemic is difficult to overestimate. However, a number of studies conducted in the past have associated the additional intake of vitamin A with an increased risk of developing cancer, as a result of which vitamin A was practically excluded from therapeutic practice in developed countries. Our review highlights the role of vitamin A in maintaining human health and the latest data on its effect on the development mechanisms of somatic pathology.


2019 ◽  
Vol 4 ◽  
pp. 21-23
Author(s):  
Purvish M. Parikh ◽  
T. P. Sahoo ◽  
Randeep Singh ◽  
Bahl Ankur ◽  
Talvar Vineet ◽  
...  

Response evaluation criteria in solid tumors (RECIST) are a method used to evaluate and document the response to cancer treatment in solid tumors. The availability of a new class of immuneoncology drugs has resulted in the need to modify RECIST criteria methodology. The first leadership immuno-oncology network (LION) master course brought together experts in oncology and immuno-oncology. Six questions were put to the experts and their opinion, supporting evidence, and experience were discussed to arrive at a practical consensus recommendation. n this nascent field, the availability of a practical consensus recommendation developed by experts in the field is of immense value to the community oncologist and other health-care consultants.


2019 ◽  
Vol 25 (27) ◽  
pp. 2909-2918 ◽  
Author(s):  
Joanna Giemza-Stokłosa ◽  
Md. Asiful Islam ◽  
Przemysław J. Kotyla

Background:: Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response. Methods:: Different electronic databases were searched in a non-systematic way to find out the literature of interest. Results:: The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still’s diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm. Conclusion:: This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.


Sign in / Sign up

Export Citation Format

Share Document