scholarly journals Parametric analysis of energy recovery ventilation performance in the high rise residential sector: a Toronto case study

2021 ◽  
Author(s):  
Adam Barker

The performance of energy recovery ventilation (ERV) units is analyzed for high rise residential buildings in the Toronto climate. ERV units are scrutinized by their ability to recover heating and cooling energy throughout the year. The rated effectiveness of ERV units is well documented through applicable Standards. Several factors are identified which have the potential to influence the impact of ERVs under actual operation conditions, including infiltration rate, ERV leakage flows, temperature set points, and operation schemes. EnergyPlus is used to represent a typical residential suite, through which the impacts of the parameters are studied. Performance of the ERV model is validated through comparison to collected temperature and humidity data from an operating ERV unit in the GTA. Results indicate that leakage flows within the ERV represent the highest potential contributor to ERV performance. Economizer control strategies are determined as a viable option for improving performance during warmer seasons. The performance of energy recovery ventilation (ERV) units is analyzed for high rise residential buildings in the Toronto climate. ERV units are scrutinized by their ability to recover heating and cooling energy throughout the year. The rated effectiveness of ERV units is well documented through applicable Standards. Several factors are identified which have the potential to influence the impact of ERVs under actual operation conditions, including infiltration rate, ERV leakage flows, temperature set points, and operation schemes. EnergyPlus is used to represent a typical residential suite, through which the impacts of the parameters are studied. Performance of the ERV model is validated through comparison to collected temperature and humidity data from an operating ERV unit in the GTA. Results indicate that leakage flows within the ERV represent the highest potential contributor to ERV performance. Economizer control strategies are determined as a viable option for improving performance during warmer seasons.

2021 ◽  
Author(s):  
Adam Barker

The performance of energy recovery ventilation (ERV) units is analyzed for high rise residential buildings in the Toronto climate. ERV units are scrutinized by their ability to recover heating and cooling energy throughout the year. The rated effectiveness of ERV units is well documented through applicable Standards. Several factors are identified which have the potential to influence the impact of ERVs under actual operation conditions, including infiltration rate, ERV leakage flows, temperature set points, and operation schemes. EnergyPlus is used to represent a typical residential suite, through which the impacts of the parameters are studied. Performance of the ERV model is validated through comparison to collected temperature and humidity data from an operating ERV unit in the GTA. Results indicate that leakage flows within the ERV represent the highest potential contributor to ERV performance. Economizer control strategies are determined as a viable option for improving performance during warmer seasons. The performance of energy recovery ventilation (ERV) units is analyzed for high rise residential buildings in the Toronto climate. ERV units are scrutinized by their ability to recover heating and cooling energy throughout the year. The rated effectiveness of ERV units is well documented through applicable Standards. Several factors are identified which have the potential to influence the impact of ERVs under actual operation conditions, including infiltration rate, ERV leakage flows, temperature set points, and operation schemes. EnergyPlus is used to represent a typical residential suite, through which the impacts of the parameters are studied. Performance of the ERV model is validated through comparison to collected temperature and humidity data from an operating ERV unit in the GTA. Results indicate that leakage flows within the ERV represent the highest potential contributor to ERV performance. Economizer control strategies are determined as a viable option for improving performance during warmer seasons.


2019 ◽  
Vol 43 (3) ◽  
pp. 229-249 ◽  
Author(s):  
Shahrzad Soudian ◽  
Umberto Berardi

This article investigates the possibility to enhance the use of latent heat thermal energy storage (LHTES) as an energy retrofit measure by night ventilation strategies. For this scope, phase change materials (PCMs) are integrated into wall and ceiling surfaces of high-rise residential buildings with highly glazed facades that experience high indoor diurnal temperatures. In particular, this article investigates the effect of night ventilation on the performance of the PCMs, namely, the daily discharge of the thermal energy stored by PCMs. Following previous experimental tests that have shown the efficacy of LHTES in temperate climates, a system comprising two PCM layers with melting temperatures selected for a year-around LHTES was considered. To quantify the effectiveness of different night ventilation strategies to enhance the potential of this composite PCM system, simulations in EnergyPlusTM were performed. The ventilation flow rate, set point temperature, and operation period were the main tested parameters. The performance of the PCMs in relation to the variables was evaluated based on indoor operative temperature and cooling energy use variations in Toronto and New York in the summer. The solidification of the PCMs was analyzed based on the amount of night ventilation needed in each climate condition. The results quantify the positive impact of combining PCMs with night ventilation on cooling energy reductions and operative temperature regulation of the following days. In particular, the results indicate higher benefits obtainable with PCMs coupled with night ventilation in the context of Toronto, since this city experiences higher daily temperature fluctuations. The impact of night ventilation design variables on the solidification rate of the PCMs varied based on each parameter leading to different compromises based on the PCM and climate characteristics.


Solar Energy ◽  
2006 ◽  
Author(s):  
Kais Ouertani ◽  
Moncef Krarti

This paper investigates the impact of the architectural form on the energy performance of residential buildings in Tunisia. A relative compactness is defined as one indicator of a building shape. The results of the analysis indicate that a significant decrease in heating and cooling energy requirements can be obtained by minimizing the relative compactness of detached residential houses. A simplified analysis tool, suitable for early design process, is developed to assess the impact of building form on its energy performance for several cities in Tunisia.


2021 ◽  
Vol 13 (21) ◽  
pp. 11767
Author(s):  
Jihye Ryu ◽  
Jungsoo Kim

In the residential sector, householders play an active role in regulating the indoor climate via diverse control measures such as the operation of air-conditioners or windows. The main research question asked in this paper is whether control decisions made by householders are rational and effective in terms of achieving comfort and energy efficiency. Based on a field study in South Korea, this paper explores how a HVAC control strategy for high-rise apartment buildings can affect occupant comfort and adaptive behavior. Two different control strategies: (1) occupant control (OC), where occupants were allowed to freely operate the HVAC system and (2) comfort-zone control (CC), where the operation of the HVAC system was determined by the researcher, based on a pre-defined comfort zone, were applied to, and tested within the participating households in summer. The impact of the two control strategies on indoor thermal environments, thermal comfort, and occupant adaptive behavior were analyzed. We find that the CC strategy is more energy/comfort efficient than OC because: (1) comfort was be achieved at a higher indoor temperature, and (2) unnecessary control behaviors leading to cooling load increase can be minimized, which have major implications for energy consumption reduction in the residential sector.


2019 ◽  
Vol 12 (1) ◽  
pp. 116 ◽  
Author(s):  
Daniele Cecconet ◽  
Jakub Raček ◽  
Arianna Callegari ◽  
Petr Hlavínek

To achieve technically-feasible and socially-desirable sustainable management of urban areas, new paradigms have been developed to enhance the sustainability of water and its resources in modern cities. Wastewater is no longer seen as a wasted resource, but rather, as a mining ground from which to obtain valuable chemicals and energy; for example, heat energy, which is often neglected, can be recovered from wastewater for different purposes. In this work, we analyze the design and application of energy recovery from wastewater for heating and cooling a building in Brno (Czech Republic) by means of heat exchangers and pumps. The temperature and the flow rate of the wastewater flowing in a sewer located in the proximity of the building were monitored for a one-year period, and the energy requirement for the building was calculated as 957 MWh per year. Two options were evaluated: heating and cooling using a conventional system (connected to the local grid), and heat recovery from wastewater using heat exchangers and coupled heat pumps. The analysis of the scenarios suggested that the solution based on heat recovery from wastewater was more feasible, showing a 59% decrease in energy consumption compared to the conventional solution (respectively, 259,151 kWh and 620,475 kWh per year). The impact of heat recovery from wastewater on the kinetics of the wastewater resource recovery facility was evaluated, showing a negligible impact in both summer (increase of 0.045 °C) and winter conditions (decrease of 0.056 °C).


Author(s):  
Byung Kwag ◽  
Moncef Krarti

Abstract This paper investigates the impact of thermal interactions between heat exchangers integrated within building foundation piles to meet space heating and cooling needs of buildings. Specifically, a three-dimensional transient numerical model is developed to evaluate the thermal performance of the foundation piles. The model is used to estimate the temperature variations within the soil medium under various operation conditions of thermo-active foundation (TAF) systems. Then, a series of parametric analyses is carried out to evaluate the influence of design parameters of the piles on the performance of TAF systems, including the interactive effects between piles as well as the impact of these piles on the building slab heat transfer. Then, the parametric analysis results are utilized to develop simplified calculation methods to assess the thermal impacts of the geometric features for the piles on both the performance of TAF systems as well as the building slab heat losses and/or gains. The developed simplified calculation methods are suitable to develop design guidelines in order to enhance the performance of thermal piles to heat and cool buildings.


Sign in / Sign up

Export Citation Format

Share Document