scholarly journals Stability concepts in bargaining games

Author(s):  
Somnath Kundu

In this thesis we discuss some novel concepts of stability in bargaining games, over a network setting. So far, the studies on bargaining games were done as profit sharing problems, whose underlying combinatorial optimization problems are of packing type. In our work, we study bargaining games from a cost sharing perspective, where the underlying combinatorial optimization problems are covering type problems. Unlike previous studies, where bargaining processes are restricted to only two players, we study bargaining games over a more generic hypergraph setting, which allows any bargaining process to be formed among any number of players. In previous studies of bargaining games, the objects that are being negotiated are assumed to be uniform and only the outcomes of the negotiations are allowed to be different. However, in our study, we accommodate possibilities of non-uniform weights of the objects that are being negotiated, which is closer to any real life scenario. Finally we extend our study to incorporate socially aware players by introducing a relaxed and innovative definition of stability.

2021 ◽  
Author(s):  
Somnath Kundu

In this thesis we discuss some novel concepts of stability in bargaining games, over a network setting. So far, the studies on bargaining games were done as profit sharing problems, whose underlying combinatorial optimization problems are of packing type. In our work, we study bargaining games from a cost sharing perspective, where the underlying combinatorial optimization problems are covering type problems. Unlike previous studies, where bargaining processes are restricted to only two players, we study bargaining games over a more generic hypergraph setting, which allows any bargaining process to be formed among any number of players. In previous studies of bargaining games, the objects that are being negotiated are assumed to be uniform and only the outcomes of the negotiations are allowed to be different. However, in our study, we accommodate possibilities of non-uniform weights of the objects that are being negotiated, which is closer to any real life scenario. Finally we extend our study to incorporate socially aware players by introducing a relaxed and innovative definition of stability.


Author(s):  
Chu Min Li ◽  
Felip Manyà

MaxSAT solving is becoming a competitive generic approach for solving combinatorial optimization problems, partly due to the development of new solving techniques that have been recently incorporated into modern MaxSAT solvers, and to the challenge problems posed at the MaxSAT Evaluations. In this chapter we present the most relevant results on both approximate and exact MaxSAT solving, and survey in more detail the techniques that have proven to be useful in branch and bound MaxSAT and Weighted MaxSAT solvers. Among such techniques, we pay special attention to the definition of good quality lower bounds, powerful inference rules, clever variable selection heuristics and suitable data structures. Moreover, we discuss the advantages of dealing with hard and soft constraints in the Partial MaxSAT formalims, and present a summary of the MaxSAT Evaluations that have been organized so far as affiliated events of the International Conference on Theory and Applications of Satisfiability Testing.


2021 ◽  
Vol 11 (14) ◽  
pp. 6449
Author(s):  
Fernando Peres ◽  
Mauro Castelli

In the past few decades, metaheuristics have demonstrated their suitability in addressing complex problems over different domains. This success drives the scientific community towards the definition of new and better-performing heuristics and results in an increased interest in this research field. Nevertheless, new studies have been focused on developing new algorithms without providing consolidation of the existing knowledge. Furthermore, the absence of rigor and formalism to classify, design, and develop combinatorial optimization problems and metaheuristics represents a challenge to the field’s progress. This study discusses the main concepts and challenges in this area and proposes a formalism to classify, design, and code combinatorial optimization problems and metaheuristics. We believe these contributions may support the progress of the field and increase the maturity of metaheuristics as problem solvers analogous to other machine learning algorithms.


Algorithms ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 286
Author(s):  
Ali Ahmid ◽  
Thien-My Dao ◽  
Ngan Van Le

Solving of combinatorial optimization problems is a common practice in real-life engineering applications. Trusses, cranes, and composite laminated structures are some good examples that fall under this category of optimization problems. Those examples have a common feature of discrete design domain that turn them into a set of NP-hard optimization problems. Determining the right optimization algorithm for such problems is a precious point that tends to impact the overall cost of the design process. Furthermore, reinforcing the performance of a prospective optimization algorithm reduces the design cost. In the current study, a comprehensive assessment criterion has been developed to assess the performance of meta-heuristic (MH) solutions in the domain of structural design. Thereafter, the proposed criterion was employed to compare five different variants of Ant Colony Optimization (ACO). It was done by using a well-known structural optimization problem of laminate Stacking Sequence Design (SSD). The initial results of the comparison study reveal that the Hyper-Cube Framework (HCF) ACO variant outperforms the others. Consequently, an investigation of further improvement led to introducing an enhanced version of HCFACO (or EHCFACO). Eventually, the performance assessment of the EHCFACO variant showed that the average practical reliability became more than twice that of the standard ACO, and the normalized price decreased more to hold at 28.92 instead of 51.17.


Filomat ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 513-522 ◽  
Author(s):  
Darko Drakulic ◽  
Aleksandar Takaci ◽  
Miroslav Maric

Covering location problems is well-known and very important class of combinatorial optimization problems. Standard models for covering location problems cannot encompass real-life problems, because real-life problems contain some degree of uncertainty. The use of fuzzy sets in modeling covering location problems allows the implementation of these conditions. Depending on the type of problems, it is necessary to use different aggregation operators in calculating solution?s quality. The aim of this study is introducing of fuzzy sets with different corresponding conorms in modeling most known types of covering location problems.


2013 ◽  
Vol 15 (02) ◽  
pp. 1340001 ◽  
Author(s):  
HERVÉ MOULIN

The fertile application of cooperative game techniques to cost sharing problems on networks has so far concentrated on the Stand Alone core test of fairness and/or stability, and ignored many combinatorial optimization problems where this core can be empty. I submit there is much room for an axiomatic discussion of fair division in the latter problems, where Stand Alone objections are not implementable. But the computational complexity of optimal solutions is still a very severe obstacle to this approach.


2019 ◽  
Vol 4 (2019) ◽  
pp. 3-12
Author(s):  
Fatma Mbarek ◽  
Volodymyr Mosorov

Combinatorial optimization challenges are rooted in real-life problems, continuous optimization problems, discrete optimization problems and other significant problems in telecommunications which include, for example, routing, design of communication networks and load balancing. Load balancing applies to distributed systems and is used for managing web clusters. It allows to forward the load between web servers, using several scheduling algorithms. The main motivation for the study is the fact that combinatorial optimization problems can be solved by applying optimization algorithms. These algorithms include ant colony optimization (ACO), honey bee (HB) and multi-objective optimization (MOO). ACO and HB algorithms are inspired by the foraging behavior of ants and bees which use the process to locate and gather food. However, these two algorithms have been suggested to handle optimization problems with a single-objective. In this context, ACO and HB have to be adjusted to multiobjective optimization problems. This paper provides a summary of the surveyed optimization algorithms and discusses the adaptations of these three algorithms. This is pursued by a detailed analysis and a comparison of three major scheduling techniques mentioned above, as well as three other, new algorithms (resulting from the combination of the aforementioned techniques) used to efficiently handle load balancing issues.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
V. N. Srinivasa Rao Repalle ◽  
Fekadu Tesgera Agama

Coloring of fuzzy graphs has many real-life applications in combinatorial optimization problems like traffic light system, exam scheduling, and register allocation. The coloring of total fuzzy graphs and its applications are well studied. This manuscript discusses the description of 2-quasitotal graph for fuzzy graphs. The proposed concept of 2-quasitotal fuzzy graph is explicated by several numerical examples. Moreover, some theorems related to the properties of 2-quasitotal fuzzy graphs are stated and proved. The results of these theorems are compared with the results obtained from total fuzzy graphs and 1-quasitotal fuzzy graphs. Furthermore, it defines 2-quasitotal coloring of fuzzy total graphs and which is justified.


2016 ◽  
Vol 25 (01) ◽  
pp. 1660005
Author(s):  
Laura Climent ◽  
Richard J. Wallace ◽  
Barry O'Sullivan ◽  
Eugene C. Freuder

Data uncertainty in real-life problems is a current challenge in many areas, including Operations Research (OR) and Constraint Programming (CP). This is especially true given the continual and accelerating increase in the amount of data associated with real-life problems, to which Large Scale Combinatorial Optimization (LSCO) techniques may be applied. Although data uncertainty has been studied extensively in the literature, many approaches do not take into account the partial or complete lack of information about uncertainty in real-life settings. To meet this challenge, in this paper we present a strategy for extrapolating data from limited uncertain information to ensure a certain level of robustness in the solutions obtained. Our approach is motivated and evaluated with real-world applications of harvesting and supplying timber from forests to mills and the well known knapsack problem with uncertainty.


Sign in / Sign up

Export Citation Format

Share Document