scholarly journals Investigating Effects of Metakaolin Content on the Physical Properties of Concrete, and its Susceptibility to Colonization and Biodegradation by Sulphur Oxidizing Bacteria

2021 ◽  
Author(s):  
Christopher Bentley

Biogenic sulphuric acid attack on concrete is a concern worldwide, as it can lead to collapse of sewer infrastructure. Despite knowledge of the cause and the degradation pathways, not much is known about colonization patterns by sulphur oxidizing bacteria. These bacteria were grown on concrete in attempts to catalog degradation and colonization patterns. This was achieved using a battery of concrete property tests and experimenting with imaging techniques. Increased metakaolin content of concrete decreased sorptivity and chloride permeability of concrete while increasing strength and porosity. Concrete with higher metakaolin appeared more resistant to biogenic acid attack, despite increased porosity. Advances were made in protocols for imaging bacteria on a concrete surface, a challenge given the presence of autofluorescing materials in concrete. Information gained has shown that imaging bacteria on an autofluorescent surface can be achieved, and recommendations are made to further advance these efforts.

2021 ◽  
Author(s):  
Christopher Bentley

Biogenic sulphuric acid attack on concrete is a concern worldwide, as it can lead to collapse of sewer infrastructure. Despite knowledge of the cause and the degradation pathways, not much is known about colonization patterns by sulphur oxidizing bacteria. These bacteria were grown on concrete in attempts to catalog degradation and colonization patterns. This was achieved using a battery of concrete property tests and experimenting with imaging techniques. Increased metakaolin content of concrete decreased sorptivity and chloride permeability of concrete while increasing strength and porosity. Concrete with higher metakaolin appeared more resistant to biogenic acid attack, despite increased porosity. Advances were made in protocols for imaging bacteria on a concrete surface, a challenge given the presence of autofluorescing materials in concrete. Information gained has shown that imaging bacteria on an autofluorescent surface can be achieved, and recommendations are made to further advance these efforts.


2011 ◽  
Vol 7 (3) ◽  
pp. 225
Author(s):  
Gianfranco Sinagra ◽  
Michele Moretti ◽  
Giancarlo Vitrella ◽  
Marco Merlo ◽  
Rossana Bussani ◽  
...  

In recent years, outstanding progress has been made in the diagnosis and treatment of cardiomyopathies. Genetics is emerging as a primary point in the diagnosis and management of these diseases. However, molecular genetic analyses are not yet included in routine clinical practice, mainly because of their elevated costs and execution time. A patient-based and patient-oriented clinical approach, coupled with new imaging techniques such as cardiac magnetic resonance, can be of great help in selecting patients for molecular genetic analysis and is crucial for a better characterisation of these diseases. This article will specifically address clinical, magnetic resonance and genetic aspects of the diagnosis and management of cardiomyopathies.


Alloy Digest ◽  
2015 ◽  
Vol 64 (9) ◽  

Abstract Wieland-SW1 is a lead-free special brass made in extruded and drawn products. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Cu-841. Producer or source: Wieland Metals Inc. and Wieland-Werke AG.


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract MULTIMET alloy is cobalt-nickel-chromium-iron austenitic alloy having high oxidation and scaling resistance along with good high-temperature properties. It tends to work harden but does not respond significantly to age-hardening. It is made in a wrought grade (0.08-0.16% carbon) and a casting grade (0.20% max. carbon). This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SS-28. Producer or source: Haynes Stellite Company. Originally published May 1955, revised December 1961.


2018 ◽  
Vol 1 ◽  
pp. 251522111878837 ◽  
Author(s):  
Mukesh Kumar Sinha ◽  
Biswa Ranjan Das

Chitosan derivatives are difficult to electrospun because they have poor flexibility of their polyelectrolyte chains. Based on extensive trails, we have successfully electrospun chitosan polymer and, subsequently, coated on non-woven polypropylene utilizing Nanospider technology. This experimentally developed nanofibrous webs of various densities were coated on non-woven fabric and, subsequently, stitched with activated carbon sphere (ACS) adhered composite fabric. Biological filtration and chemical protection were evaluated and the optimized density offering the highest value with meeting specified comfort was assessed. Results showed that optimized web morphology of 0.43 g m−2 is the best for integration with nuclear, biological and chemical absorbent layer of low ACS add-on in all aspects of comfort and protective behaviours. This will be meeting stringent defence protective requirements and lowering down the weight of suit by approximately 25%. An attempt has also been made in this research to protect from sulphur mustard chemical warfare agent by using both theories: (a) barrier techniques and (b) disintegrating the trapped molecules via functionalization of the web. Result shows that first molecules get trapped by in web layer (barrier effect) and subsequently destroyed by hydrolysis mechanism. Scanning microscopic image shows web is acting as barrier layer by trapping sulphur mustard particles. Optimized web of 0.43 g m−2 was functionalized with zinc (Zn) oxide and the presence of Zn particles was confirmed by imaging techniques. Crystalline and thermal analysis depicts that structural changes were found in sulphur mustard spotted functionalized web. Raman spectra show chemically disintegrated hydrolysed products of sulphur mustard. Bacterial filtration efficiency, antimicrobial and comfort properties were measured for assessing the introduction of nanowebs for biological protection and chemical protection in newly created multilayered fabric structure with low ACS add-on (180 g m−2). The initial encouraging outcome of this research expects whether the multilayered fabric could be introduced in the suit.


2018 ◽  
Vol 19 (12) ◽  
pp. 3702 ◽  
Author(s):  
Grazia Femminella ◽  
Tony Thayanandan ◽  
Valeria Calsolaro ◽  
Klara Komici ◽  
Giuseppe Rengo ◽  
...  

Alzheimer’s disease is the most common form of dementia and is a significant burden for affected patients, carers, and health systems. Great advances have been made in understanding its pathophysiology, to a point that we are moving from a purely clinical diagnosis to a biological one based on the use of biomarkers. Among those, imaging biomarkers are invaluable in Alzheimer’s, as they provide an in vivo window to the pathological processes occurring in Alzheimer’s brain. While some imaging techniques are still under evaluation in the research setting, some have reached widespread clinical use. In this review, we provide an overview of the most commonly used imaging biomarkers in Alzheimer’s disease, from molecular PET imaging to structural MRI, emphasising the concept that multimodal imaging would likely prove to be the optimal tool in the future of Alzheimer’s research and clinical practice.


Geophysics ◽  
2000 ◽  
Vol 65 (6) ◽  
pp. 1882-1889 ◽  
Author(s):  
Matthew H. Salisbury ◽  
Bernd Milkereit ◽  
Graham Ascough ◽  
Robin Adair ◽  
Larry Matthews ◽  
...  

Laboratory studies show that the acoustic impedances of massive sulfides can be predicted from the physical properties ([Formula: see text], density) and modal abundances of common sulfide minerals using simple mixing relations. Most sulfides have significantly higher impedances than silicate rocks, implying that seismic reflection techniques can be used directly for base metals exploration, provided the deposits meet the geometric constraints required for detection. To test this concept, a series of 1-, 2-, and 3-D seismic experiments were conducted to image known ore bodies in central and eastern Canada. In one recent test, conducted at the Halfmile Lake copper‐nickel deposit in the Bathurst camp, laboratory measurements on representative samples of ore and country rock demonstrated that the ores should make strong reflectors at the site, while velocity and density logging confirmed that these reflectors should persist at formation scales. These predictions have been confirmed by the detection of strong reflections from the deposit using vertical seismic profiling and 2-D multichannel seismic imaging techniques.


2021 ◽  
Vol 31 (1) ◽  
pp. 10-16
Author(s):  
Laura Tapoi ◽  
Alexandra Clement ◽  
Rodica Radu ◽  
Radu Sascau

Arrhythmogenic cardiomyopathy, as it has been recently redefi ned, is characterized by progressive myocyte loss with fibrosis and fat infiltration of the myocardium, which finally leads to a broad clinical spectrum ranging from heart failure symptoms to sudden cardiac death. The diagnosis of arrhythmogenic cardiomyopathy is challenging particularly because of its heterogeneity in presentation, which varies from focal right ventricular involvement to biventricular or prominent left ventricular phenotype. In the past decades, the development of new electrocardiographic and imaging diagnostic criteria for arrhythmogenic cardiomyopathy constituted an important area of research and resulted in the elaboration of the Padua criteria. However, even with the widespread availability of modern imaging techniques, there is still a lack of awareness in the health care community and this pathology persist in being under-or misdiagnosed. Given the limited indication of endomyocardial biopsy for the diagnosis of arrhythmogenic cardiomyopathy, one can conclude that the progress that has been made in the last few years in the multimodality imaging field is of utmost importance for the early detection and proper treatment of patients with arrhythmogenic cardiomyopathy, providing valuable prognostic information.


2003 ◽  
Vol 285 (2) ◽  
pp. L269-L280 ◽  
Author(s):  
Cindy Lawler ◽  
William A. Suk ◽  
Bruce R. Pitt ◽  
Claudette M. St. Croix ◽  
Simon C. Watkins

The recent resurgence of interest in the use of intravital microscopy in lung research is a manifestation of extraordinary progress in visual imaging and optical microscopy. This review evaluates the tools and instrumentation available for a number of imaging modalities, with particular attention to recent technological advances, and addresses recent progress in use of optical imaging techniques in basic pulmonary research. 1 Limitations of existing methods and anticipated future developments are also identified. Although there have also been major advances made in the use of magnetic resonance imaging, positron emission tomography, and X-ray and computed tomography to image intact lungs and while these technologies have been instrumental in advancing the diagnosis and treatment of patients, the purpose of this review is to outline developing optical methods that can be evaluated for use in basic research in pulmonary biology.


2020 ◽  
Vol 49 (1_suppl) ◽  
pp. 126-140
Author(s):  
C.J. Martin

The International Commission on Radiological Protection (ICRP) developed effective dose as a quantity related to risk for occupational and public exposure. There was a need for a similar dose quantity linked to risk for making everyday decisions relating to medical procedures. Coefficients were developed to enable the calculation of doses to organs and tissues, and effective doses for procedures in nuclear medicine and radiology during the 1980s and 1990s. Effective dose has provided a valuable tool that is now used in the establishment of guidelines for patient referral and justification of procedures, choice of appropriate imaging techniques, and providing dose data on potential exposure of volunteers for research studies, all of which require the benefits from the procedure to be weighed against the risks. However, the approximations made in the derivation of effective dose are often forgotten, and the uncertainties in calculations of risks are discussed. An ICRP report on protection dose quantities has been prepared that provides more information on the application of effective dose, and concludes that effective dose can be used as an approximate measure of possible risk. A discussion of the way in which it should be used is given here, with applications for which it is considered suitable. Approaches to the evaluation of risk and methods for conveying information on risk are also discussed.


Sign in / Sign up

Export Citation Format

Share Document