Comparative analysis on the film cooling mechanisms of elliptical and cylindrical holes with 90° compound angle

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guohua Zhang ◽  
Gongnan Xie ◽  
Bengt Ake Sunden

Purpose In this study, numerical simulations are performed to compare the adiabatic film cooling effectiveness and reveal the difference of film cooling mechanisms of two models with the same geometries and cross-section areas of film holes’ exits at three typical blowing ratios (M = 0.5, 1 and 1.5). The two models are an elliptical model and a cylindrical model with 90° compound angle, respectively. Design/methodology/approach Three different cases are considered in this work and the baseline is the model with a cylindrical film hole. The same boundary conditions and a validated turbulence model (realizable k-ε) are adopted for all cases. Findings The results show that both the elliptical and cylindrical models with 90° compound angle can enhance the film cooling effectiveness compared with the baseline. However, the elliptical model performs well at lower blowing ratios and in the near region at each blowing ratio because of the wider width of the film hole’s exit. The cylindrical model with 90° compound angle provides better film cooling effectiveness in the further downstream area of the film hole at higher blowing ratio because of the less lift-off and better coolant coverage in the larger x/D region along the mainstream direction. Originality/value Overall, it can be concluded that although the elliptical and cylindrical models with 90° compound angle have identical hole exits, the different inlet direction and cross-sectional geometry affect the flow structures when the coolant enters, moves through and exits the hole and finally different film cooling results appear.

Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

A detailed parametric study of film-cooling effectiveness was carried out on a turbine blade platform. The platform was cooled by purge flow from a simulated stator–rotor seal combined with discrete hole film-cooling. The cylindrical holes and laidback fan-shaped holes were accessed in terms of film-cooling effectiveness. This paper focuses on the effect of coolant-to-mainstream density ratio on platform film-cooling (DR = 1 to 2). Other fundamental parameters were also examined in this study—a fixed purge flow of 0.5%, three discrete-hole film-cooling blowing ratios between 1.0 and 2.0, and two freestream turbulence intensities of 4.2% and 10.5%. Experiments were done in a five-blade linear cascade with inlet and exit Mach number of 0.27 and 0.44, respectively. Reynolds number of the mainstream flow was 750,000 and was based on the exit velocity and chord length of the blade. The measurement technique adopted was the conduction-free pressure sensitive paint (PSP) technique. Results indicated that with the same density ratio, shaped holes present higher film-cooling effectiveness and wider film coverage than the cylindrical holes, particularly at higher blowing ratios. The optimum blowing ratio of 1.5 exists for the cylindrical holes, whereas the effectiveness for the shaped holes increases with an increase of blowing ratio. Results also indicate that the platform film-cooling effectiveness increases with density ratio but decreases with turbulence intensity.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krishna Anand Vasu Devan Nair Girija Kumari ◽  
Parammasivam Kanjikoil Mahali

Purpose This paper aims to investigate the film cooling effectiveness (FCE) and mixing flow characteristics of the flat surface ramp model integrated with a compound angled film cooling jet. Design/methodology/approach Three-dimensional numerical simulation is performed on a flat surface ramp model with Reynolds Averaged Navier-Stokes approach using a finite volume solver. The tested model has a fixed ramp angle of 24° and a ramp width of two times the diameter of the film cooling hole. The coolant air is injected at 30° along the freestream direction. Three different film hole compound angles oriented to freestream direction at 0°, 90° and 180° were investigated for their performance on-ramp film cooling. The tested blowing ratios (BRs) are in the range of 0.9–2.0. Findings The film hole oriented at a compound angle of 180° has improved the area-averaged FCE on the ramp test surface by 86.74% at a mid-BR of 1.4% and 318.75% at higher BRs of 2.0. The 180° film hole compound angle has also produced higher local and spanwise averaged FCE on the ramp test surface. Originality/value According to the authors’ knowledge, this study is the first of its kind to investigate the ramp film cooling with a compound angle film cooling hole. The improved ramp model with a 180° film hole compound angle can be effectively applied for the end-wall surfaces of gas turbine film cooling.


Author(s):  
Zhonghao Tang ◽  
Gongnan Xie ◽  
Honglin Li ◽  
Wenjing Gao ◽  
Chunlong Tan ◽  
...  

Abstract Film cooling performance of the cylindrical film holes and the bifurcated film holes on the leading edge model of the turbine blade are investigated in this paper. The suitability of different turbulence models to predict local and average film cooling effectiveness is validated by comparing with available experimental results. Three rows of holes are arranged in a semi-cylindrical model to simulate the leading edge of the turbine blade. Four different film cooling structures (including a cylindrical film holes and other three different bifurcated film holes) and four different blowing ratios are studied in detail. The results show that the film jets lift off gradually in the leading edge area as the blowing ratio increases. And the trajectory of the film jets gradually deviate from the mainstream direction to the spanwise direction. The cylindrical film holes and vertical bifurcated film holes have better film cooling effectiveness at low blowing ratio while the other two transverse bifurcated film holes have better film cooling effectiveness at high blowing ratio. And the film cooling effectiveness of the transverse bifurcated film holes increase with the increasing the blowing ratio. Additionally, the advantage of transverse bifurcated holes in film cooling effectiveness is more obvious in the downstream region relative to the cylindrical holes. The Area-Average film cooling effectiveness of transverse bifurcated film holes is 38% higher than that of cylindrical holes when blowing ratio is 2.


Author(s):  
A. C. Smith ◽  
J. H. Hatchett ◽  
A. C. Nix ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

An experimental and numerical investigation was conducted to determine the film cooling effectiveness of a normal slot and angled slot under realistic engine Mach number conditions. Freestream Mach numbers of 0.65 and 1.3 were tested. For the normal slot, hot gas ingestion into the slot was observed at low blowing ratios (M < 0.25). At high blowing ratios (M > 0.6) the cooling film was observed to “lift off” from the surface. For the 30° angled slot, the data was found to collapse using the blowing ratio as a scaling parameter. Results from the current experiment were compared with the subsonic data previously published. For the angle slot, at supersonic freestream Mach number, the current experiment shows that at the same x/Ms, the film-cooling effectiveness increases by as much as 25% as compared to the subsonic case. The results of the experiment also show that at the same x/Ms, the film cooling effectiveness of the angle slot is considerably higher than the normal slot, at both subsonic and supersonic Mach numbers. The flow physics for the slot tests considered here are also described with computational fluid dynamic (CFD) simulations in the subsonic and supersonic regimes.


Author(s):  
Bai-Tao An ◽  
Jian-Jun Liu ◽  
Si-Jing Zhou ◽  
Xiao-Dong Zhang ◽  
Chao Zhang

This paper presents a new configuration of discrete film hole, i.e., the slot-based diffusion hole. Retaining the similar diffusion features to a traditional diffusion hole, the slot-based diffusion hole transforms the cross section of circle for the traditional diffusion hole to a flattened rectangle with respect to the equivalent cross-sectional area. Consequently, the exit width of the new hole is effectively enlarged. To verify the film cooling effectiveness, a low speed flat plate experimental facility incorporated with Pressure Sensitive Paint (PSP) measurement technique was employed to obtain the adiabatic film cooling effectiveness. The experiments were performed with hole pitch to diameter ratio p/D=6 and density ratio DR=1.38. The blowing ratio was varied from M=0.5 to M=2.5. A fan-shaped hole and two slot-based diffusion holes were tested and compared. Three-dimensional numerical simulation was employed to analyze the flow field in detail. The experimental results showed that the area averaged effectiveness of two slot-based diffusion holes is significantly higher than that of the fan-shaped hole when the blowing ratio exceeds 1.0. The slot-based diffusion hole demonstrates the great advantage over the fan-shaped hole at hole exit and maintains this to far downstream. The numerical results showed that the ends shape of the flattened rectangular cross section has large influences on film distribution patterns and downstream vortex structures. The semi-circle and straight line ends shapes lead to a bi-peak and a single-peak effectiveness pattern, respectively. The optimal ends shape can regulate the vortex structures and improve the film cooling effectiveness further.


Author(s):  
Chang Han ◽  
Zhongran Chi ◽  
Jing Ren ◽  
Hongde Jiang

Film cooling technique is widely used to protect the components from being destroyed by hot mainstream in a modern gas turbine. Combining round-holes is a promising way of improving film cooling effectiveness. A batch simulation of 75 cases focusing on the arrangements of combined-hole unit with two holes for improving film cooling performance are carried out in this work, and the influence of an aerodynamic parameter, blowing ratio, is considered as well. The lateral distance and compound-angle of the two holes have relative influence on the film cooling performance of a combined-hole unit. At a small lateral distance, the film cooling effectiveness increases significantly as compound-angle increases, whereas it deteriorates at a large distance and it is barely influenced by compound-angle at a medium lateral distance. Asymmetrical compound-angle is introduced aiming to balance the two branches of vortexes, but its film cooling performance is not as good as expected. The general film cooling effectiveness is in the position between that of the adjacent symmetrical compound-angle. Besides, the optimal arrangement of combined-hole unit for improving film cooling performance is relative to local aerodynamic parameter. The combination of the lateral distance of the two holes with their compound-angles for the highest film cooling effectiveness is different at different blowing ratios.


Author(s):  
Kyle R. Vinton ◽  
Travis B. Watson ◽  
Lesley M. Wright ◽  
Daniel C. Crites ◽  
Mark C. Morris ◽  
...  

The combined effects of a favorable, mainstream pressure gradient and coolant-to-mainstream density ratio have been investigated. Detailed film cooling effectiveness distributions have been obtained on a flat plate with either cylindrical (θ = 30°) or laidback, fan-shaped holes (θ = 30°, β = γ = 10°) using the pressure sensitive paint (PSP) technique. In a low speed wind tunnel, both non-accelerating and accelerating flows were considered while the density ratio varied from 1–4. In addition, the effect of blowing ratio was considered, with this ratio varying from 0.5 to 1.5. The film produced by the shaped hole outperformed the round hole under the presence of a favorable pressure gradient for all blowing and density ratios. At the lowest blowing ratio, in the absence of freestream acceleration, the round holes outperformed the shaped holes. However, as the blowing ratio increases, the shaped holes prevent lift-off of the coolant and offer enhanced protection. The effectiveness afforded by both the cylindrical and shaped holes, with and without freestream acceleration, increased with density ratio.


Author(s):  
Kevin Liu ◽  
Shang-Feng Yang ◽  
Je-Chin Han

Adiabatic film-cooling effectiveness is examined systematically on a typical high pressure turbine blade by varying three critical flow parameters: coolant blowing ratio, coolant-to-mainstream density ratio, and freestream turbulence intensity. Three average coolant blowing ratios 1.0, 1.5, and 2.0; three coolant density ratios 1.0, 1.5, and 2.0; two turbulence intensities 4.2% and 10.5%, are chosen for this study. Conduction-free pressure sensitive paint (PSP) technique is used to measure film-cooling effectiveness. Three foreign gases — N2 for low density, CO2 for medium density, and a mixture of SF6 and Argon for high density are selected to study the effect of coolant density. The test blade features 45° compound-angle shaped holes on the suction side and pressure side, and 3 rows of 30° radial-angle cylindrical holes around the leading edge region. The inlet and the exit Mach number are 0.27 and 0.44, respectively. Reynolds number based on the exit velocity and blade axial chord length is 750,000. Results reveal that the PSP is a powerful technique capable of producing clear and detailed film effectiveness contours with diverse foreign gases. As blowing ratio exceeds the optimum value, it induces more mixing of coolant and mainstream. Thus film-cooling effectiveness reduces. Greater coolant-to-mainstream density ratio results in lower coolant-to-mainstream momentum and prevents coolant to lift-off; as a result, film-cooling increases. Higher freestream turbulence causes effectiveness to drop everywhere except in the region downstream of suction side. Results are also correlated with momentum flux ratio and compared with previous studies. It shows that compound shaped hole has the greatest optimum momentum flux ratio, and then followed by axial shaped hole, compound cylindrical hole, and axial cylindrical hole.


Author(s):  
Siavash Khajehhasani ◽  
Bassam A. Jubran

The film cooling performance using novel sister shaped single-hole (SSSH) schemes are numerically investigated in the present study. The downstream, upstream and up/downstream SSSH configurations are formed by merging the discrete sister holes to the primary injection hole through a series of specific orientations. The obtained results are compared with a conventional cylindrical hole and a forward diffused shaped hole. The RANS simulations are performed using the realizable k-ε model with the standard wall function. Results are presented for low and high blowing ratios of 0.25 and 1.5, respectively. The film cooling effectiveness is notably increased for the novel shaped holes, particularly at the high blowing ratio of 1.5. Furthermore, a considerable decrease in the jet lift-off has been achieved for the proposed film hole geometries, wherein fully attached flow to the wall surface is observed for the upstream and up/downstream SSSH schemes.


2021 ◽  
Author(s):  
Mohammed A. Gandhi

An experimental study was conducted to investigate the film cooling effectiveness of a few configurations of short injection holes: single row, double row and both of the preceding cases with an upstream ramp placed at two different locations. In order to perform the above study, a wind-tunnel facility was assembled to facilitate in the successful culmination of the experiments. The focus of the study was to determine the cooling provided by the short injection holes at a variety of blowing ratios and whether adding an extra row of holes, upstream of the first row would make a difference. For the second part, a ramp was placed upstream of the single and double row configuration to help improve cooling . All of the experiments were performed in a low speed wind-tunnel with a mainstream velocity of 8 m/s and a turbulence insity of 3.3%. Higher blowing ratios were ineffective in improving film-cooling effectiveness due to jet lift-off. Two rows of holes increased the cooling effectiveness by 200%, when compared to single row configurations at the same blowing ratio without ramps. Upstream ramps provided significant improvement in the near hole region of the injection holes.


Sign in / Sign up

Export Citation Format

Share Document