scholarly journals Heat Transfer To Small Cylinders Within A Packed Bed

Author(s):  
Christopher Penny

Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties. Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties.A set of seven small cylinders ranging in size from 1.27 to 9.53mm were resistively heated within a 311mm diameter lab-scale packed bed. The porous medium in which the samples were immersed was fine alumina oxide sand, with mean particle sizes ranging from 145 to 33μm. Four separate Type K thermocouples were used to measure temperatures at pertinent locations within the apparatus: bed temperature, inner sample temperature, left and right sample temperatures. The apparatus was operated under flow rates up until incipient fluidization. The trends observed in this research compared well with published data, though the correlations developed from other research consistently under-predicted the heat transfer capacity within the packed bed. The correlation that was developed for calculating the mean Nusselt number was accurate to within ±15% for the entire range of tested and published data.

2021 ◽  
Author(s):  
Christopher Penny

Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties. Heat transfer to small cylinders within a porous media has been experimentally and analytically studied extensively over a varying degree of sample and particle sizes and fluid flow regimes. In general, the observations, trends and empirical correlations developed for these systems do not accurately extrapolate down to small cylinders operating under the packed bed condition. The objective of this research is to develop an empirical correlation that expresses the Nusselt number of small cylinders immersed horizontally within a packed bed subject to forced convection heat transfer, in terms of the pertinent test parameters and material properties.A set of seven small cylinders ranging in size from 1.27 to 9.53mm were resistively heated within a 311mm diameter lab-scale packed bed. The porous medium in which the samples were immersed was fine alumina oxide sand, with mean particle sizes ranging from 145 to 33μm. Four separate Type K thermocouples were used to measure temperatures at pertinent locations within the apparatus: bed temperature, inner sample temperature, left and right sample temperatures. The apparatus was operated under flow rates up until incipient fluidization. The trends observed in this research compared well with published data, though the correlations developed from other research consistently under-predicted the heat transfer capacity within the packed bed. The correlation that was developed for calculating the mean Nusselt number was accurate to within ±15% for the entire range of tested and published data.


Author(s):  
Jaspinder Kaur ◽  
Roderick Melnik ◽  
Anurag Kumar Tiwari

Abstract In this present work, forced convection heat transfer from a heated blunt-headed cylinder in power-law fluids has been investigated numerically over the range of parameters, namely, Reynolds number (Re): 1–40, Prandtl number (Pr): 10–100 and power-law index (n): 0.3–1.8. The results are expressed in terms of local parameters, like streamline, isotherm, pressure coefficient, and local Nusselt number and global parameters, like wake length, drag coefficient, and average Nusselt number. The length of the recirculation zone on the rear side of the cylinder increases with the increasing value of Re and n. The effect of the total drag coefficient acting on the cylinder is seen to be higher at the low value of Re and its effect significant in shear-thinning fluids (n < 1). On the heat transfer aspect, the rate of heat transfer in fluids is increased by increasing the value of Re and Pr. The effect of heat transfer is enhanced in shear-thinning fluids up to ∼ 40% and it impedes it’s to ∼20% shear-thickening fluids. In the end, the numerical results of the total drag coefficient and average Nusselt number (in terms of J H −factor) have been correlated by simple expression to estimate the intermediate value for the new application.


2021 ◽  
Vol 321 ◽  
pp. 04014
Author(s):  
Hussein Togun

In this paper, 3D Simulation of turbulent Fe3O4/Nanofluid annular flow and heat transfer in sudden expansion are presented. k-ε turbulence standard model and FVM are applied with Reynolds number different from 20000 to 50000, enlargement ratio (ER) varied 1.25, 1.67, and 2, , and volume concentration of Fe3O4/Nanofluid ranging from 0 to 2% at constant heat flux of 4000 W/m2. The main significant effect on surface Nusselt number found by increases in volume concentration of Fe3O4/Nanofluid for all cases because of nanoparticles heat transport in normal fluid as produced increases in convection heat transfer. Also the results showed that suddenly increment in Nusselt number happened after the abrupt enlargement and reach to maximum value then reduction to the exit passage flow due to recirculation flow as created. Moreover the size of recirculation region enlarged with the rise in enlargement ratio and Reynolds number. Increase of volume Fe3O4/nanofluid enhances the Nusselt number due to nanoparticles heat transport in base fluid which raises the convection heat transfer. Increase of Reynolds number was observed with increased Nusselt number and maximum thermal performance was found with enlargement ratio of (ER=2) and 2% of volume concentration of Fe3O4/nanofluid. Further increases in Reynolds number and enlargement ratio found lead to reductions in static pressure.


Author(s):  
Sunil V. Dingare ◽  
Narayan K. Sane ◽  
Ratnakar R. Kulkarni

Abstract Fins are commonly employed for cooling of electronic equipment, compressors, Internal Combustion engines and for heat exchange in various heat exchangers. In short fin (length to height ratio, L/H = 5) arrays used for natural convection cooling, a stagnation zone forms at the central portion and that portion is not effective for carrying away heat. An attempt is made to modify plate fin heat sink geometry (PFHS) by inserting pin fins in the channels formed between plate fins and a plate fin pin fin heat sink (PFPFHS) is constructed to address this issue. An experimental setup is developed to validate numerical model of PFPFHS. The three-dimensional elliptic governing equations were solved using a finite volume based computational fluid dynamics (CFD) code. Fluent 6.3.26, a finite volume flow solver is used for solving the set of governing equations for the present geometry. Cell count based on grid independence and extended domain is used to obtain numerical results. Initially, the numerical model is validated for PFHS cases reported in the literature. After obtaining a good agreement with results from the literature, the numerical model for PFHS is modified for PFPFHS and used to carry out systematic parametric study of PFPFHS to analyze the effects of parameters like fin spacing, fin height, pin fin diameter, number of pin fins and temperature difference between fin array and surroundings on natural convection heat transfer from PFPFHS. It is observed that it is impossible to obtain optimum performance in terms of overall heat transfer by only concentrating on one or two parameters. The interactions among all the design parameters must be considered. This thesis presents Experimental and Numerical study of natural convection heat transfer from horizontal rectangular plate fin and plate fin pin fin arrays. The parameters of study are fin spacing, temperature difference between the fin surface and ambient air, fin height, pin fin diameter, number of pin fins and method of positioning pin fins in the fin channel. Experimental set up is validated with horizontal plate standard correlations. Results are generated in the form of variation in average heat transfer coefficient (ha), base heat transfer coefficient (hb), average Nusselt number (Nua) and base Nusselt number (Nub). Total 512 cases are studied numerically and finally an attempt is made to correlate the Nusselt Number (Nu), Rayleigh Number (Ra), increase in percentage by inserting pin fins (% Area), ratios like spacing to height (S/H) and L/H obtained in the present study.


Author(s):  
Jafar Madadnia

In the absence of a simple technique to predict convection heat transfer on building integrated photovoltaic (BIPV) surfaces, a mobile probe with two thermocouples was designed. Thermal boundary layers on vertical flat surfaces of a photovoltaic (PV) and a metallic plate were traversed. The plate consisted of twelve heaters where heat flux and surface temperature were controlled and measured. Uniform heat flux condition was developed on the heaters to closely simulate non-uniform temperature distribution on vertical PV modules. The two thermocouples on the probe measured local air temperature and contact temperature with the wall surface. Experimental results were presented in the forms of local Nusselt numbers versus Rayleigh numbers “Nu=a * (Ra)b”, and surface temperature versus dimensionless height [Ts -T∞= c*(z/h)d]. The constant values for “a”, “b”, “c” and “d” were determined from the best curve-fitting to the power-law relation. The convection heat transfer predictions from the empirical correlations were found to be in consistent with those predictions made by a number of correlations published in the open literature. A simple technique is then proposed to employ two experimental data from the probe to refine empirical correlations as the operational conditions change. A flexible technique to update correlations is of prime significance requirement in thermal design and operation of BIPV modules. The work is in progress to further extend the correlation to predict the combined radiation and convection on inclined PVs and channels.


1994 ◽  
Vol 116 (1) ◽  
pp. 73-80 ◽  
Author(s):  
K. Nasr ◽  
S. Ramadhyani ◽  
R. Viskanta

Forced convection heat transfer from a cylinder embedded in a packed bed of spherical particles was studied experimentally. With air as the working fluid, the effects of particle diameter and particle thermal conductivity were examined for a wide range of thermal conductivities (from 200 W/m K for aluminum to 0.23 W/m K for nylon) and three nominal particle sizes (3 mm, 6 mm, and 13 mm). In the presence of particles, the measured convective heat transfer coefficient was up to seven times higher than that for a bare tube in crossflow. It was found that higher heat transfer coefficients were obtained with smaller particles and higher thermal conductivity packing materials. The experimental data were compared against the predictions of a theory based on Darcy’s law and the boundary layer approximations. While the theoretical equation was moderately successful at predicting the data, improved correlating equations were developed by modifying the form of the theoretical equation to account better for particle diameter and conductivity variations.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
C. Y. Wang

The H1 and H2 forced convection heat transfer in rectangular ducts are studied using an accurate, analytic method. It is confirmed that, as the aspect ratio tends to infinity, the Nusselt number for the H2 case approaches 2.9162, much lower than the parallel plate value of 8.2353 attained by the H1 case. The controversy about the H2 limit is thus settled. An explanation of the behavior is suggested.


2021 ◽  
Vol 287 ◽  
pp. 03010
Author(s):  
Rajashekhar Pendyala ◽  
Suhaib Umer Ilyas ◽  
Yean Sang Wong

The heat transfer process takes place in numerous applications through the natural convection of fluids. Investigations of the natural convection heat transfer in enclosures have gained vital importance in the last decade for the improvement in thermal performance and design of the heating/cooling systems. Aspect ratios (AR=height/length) of the enclosures are one of the crucial factors during the natural convection heat transfer process. The investigated fluids consisting of air, water, engine oil, mercury, and glycerine have numerous engineering applications. Heat transfer and fluid flow characteristics are studied in 3-dimensional rectangular enclosures with varying aspect ratios (0.125 to 150) using computational fluid dynamics (CFD) simulations. Studies are carried out using the five different fluids having Prandtl number range 0.01 to 4500 in rectangular enclosures with the hot and cold surface with varying temperature difference 20K to 100K. The Nusselt number and heat transfer coefficients are estimated at all conditions to understand the dependency of ARs on the heat transfer performance of selected fluids. Temperature and velocity profiles are compared to study the flow pattern of different fluids during natural convection. The Nusselt number correlations are developed in terms of aspect ratio and Rayleigh number to signify the natural convection heat transfer performance.


2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


Sign in / Sign up

Export Citation Format

Share Document