scholarly journals Fuel connectivity, burn severity, and seedbank survivorship drive the grass fire cycle in a semi-arid shrubland.

2021 ◽  
Author(s):  
Adam Lee Mahood ◽  
Michael J Koontz ◽  
Jennifer Balch

Introduced grasses can initiate novel grass-fire cycles that alter ecosystem structure and function, and threaten biodiversity. In sagebrush communities in the western United States, annual grass invasion increases the connectivity of fine fuels, which increases the size and spatial contiguity of fires. This increase in fire size and contiguity results in post-fire plant communities that are dominated by introduced annual grasses (IAG), which are themselves more likely to promote large fires and initiate a novel grass-fire cycle. But the mechanisms by which pre-fire invasion and fire occurrence are linked to higher post-fire flammability are not fully understood. Here, we investigate the successive mechanisms in a potential positive feedback that maintains the novel annual grass-fire cycle. We used total vegetation cover (TVC) as a proxy for fuel connectivity and found that pre-fire TVC increased burn severity. We then used a Bayesian joint species distribution model to examine how burn severity affected the proportion of IAG in the seed bank, and found that higher burn severity had mostly positive or neutral effects on the occurrence of IAG and other non-native species, and mostly negative or neutral relationships with native species. We found that the abundance of IAG seeds in the seedbank immediately post-fire had a positive effect on the fuel connectivity 3 years after fire, thus completing a positive feedback promoting IAG. These results suggest that measurable characteristics of ecosystem structure (e.g. TVC) and fire (dNBR) may be used to inform management actions to mitigate the negative effects of the grass-fire cycle, perhaps via targeted restoration applications or pre-fire fuel treatments.

2015 ◽  
Vol 26 (4) ◽  
pp. 639-659 ◽  
Author(s):  
Matthew P. Adams ◽  
Megan I. Saunders ◽  
Paul S. Maxwell ◽  
Daniel Tuazon ◽  
Chris M. Roelfsema ◽  
...  

2021 ◽  
Author(s):  
Katie Moriarty ◽  
Joel Thompson ◽  
Matthew Delheimer ◽  
Brent Barry ◽  
Mark Linnell ◽  
...  

AbstractBackgroundA suite of mammalian species have experienced range contractions following European settlement and post-settlement development of the North American continent. For example, while North American martens (American marten, Martes americana; Pacific marten, M. caurina) generally have a broad range across northern latitudes, local populations have experienced substantial reductions in distribution and some extant populations are small and geographically isolated. The Humboldt marten (M. c. humboldtensis), a subspecies of Pacific marten that occurs in coastal Oregon and northern California, was recently designated as federally threatened in part due to its reduced distribution. To inform strategic conservation actions, we assessed Humboldt marten occurrence by compiling all known records from their range.MethodsWe compiled Humboldt marten locations since their rediscover to present (1,692 marten locations, 1996-2020). We spatially-thinned locations to 500-m to assess correlations with variables across contemporary Humboldt marten distribution (n=384). Using maximum entropy modeling (Maxent), we created distribution models with variables optimized for spatial scale; pre-selected scales were associated with marten ecology (50 to 1170 m radius). Marten locations were most correlated with abiotic factors (e.g., precipitation), which are unalterable and therefore uninformative within the context of restoration or management actions. Thus, we created variables to focus on hypothesized marten habitat relationships, including understory conditions such as predicted suitability of shrub species.ResultsHumboldt marten locations were positively associated with increased shrub cover (salal (Gautheria shallon), mast producing trees), increased pine (Pinus sp) overstory cover and precipitation at home-range spatial scales, areas with low and high amounts of canopy cover and slope, and cooler August temperatures. Unlike other recent literature on the species, we found little evidence that Humboldt marten locations were associated with old growth structural indices, perhaps because of a potential mismatch in the association between this index and shrub cover. As with any species distribution model, there were gaps in predicted distribution where Humboldt martens have been located during more recent surveys, for instance the southeastern portion of Oregon’s coast range. Conservation efforts and our assessment of potential risks to Humboldt marten populations would benefit from additional information on range extent, population sizes, and fine-scale habitat use. Like many rare and lesser-known species, this case study provides an example of how limited information can provide differing interpretations, emphasizing the need for study-level replication in ecology.


2020 ◽  
Author(s):  
Mariano E. Malvé ◽  
Marcelo M. Rivadeneira ◽  
Sandra Gordillo

AbstractThis study aims at synthesizing the recent invasion history of Carcinus maenas in the SW Atlantic (~20 years), particularly the northward expansion, based on available published papers, technical reports, and new field surveys. Our analyses extend the known distribution range northwards ca. 330 km. totaling ~1000 km along the Argentinean coast since its last detection in Nuevo Gulf in 2015. The expansion rate appeared to slow down during the last 15 years (from 115km/yr. to 30 km/yr.) as the species continues moving northwards into the transition zone between the Magellan and Argentinean biogeographic provinces (41°–43°S). In addition, a species distribution model (SDM) is provided at a much finer spatial resolution than previous studies, which accurately foresees suitable areas of invasion in the southern San Jorge Gulf, and predicts a hotspot of invasibility around 40°–33°S° if the invasion continues northward. Potential impacts of C. maenas on native species, particularly economically important oyster beds are discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel Burgas ◽  
Otso Ovaskainen ◽  
F. Guillaume Blanchet ◽  
Patrik Byholm

Despite the wide recognition that strongly interacting species can influence distributions of other species, species interactions are often disregarded when assessing or projecting biodiversity distributions. In particular, it remains largely uncharted the extent to which the disappearance of a keystone species cast repercussions in the species composition of future communities. We tested whether an avian top predator can exert both positive and negative effects on spatial distribution of other species, and if these effects persist even after the predator disappeared. We acquired bird count data at different distances from occupied and non-occupied nests of Northern goshawks Accipiter gentilis. Using a Bayesian joint species distribution model, we found that large bird species (preferred prey) are less abundant in the proximity of nests occupied by goshawks, whereas smaller species –expected to get protection from subordinate predators displaced by goshawks– more often showed an opposite association. These spatial differences level off gradually, but still persist for years after the goshawks have disappeared. This indicates that the composition of local bird populations and communities might be conditional on past species interactions. Therefore, endeavors centered around species distributions could largely benefit from acknowledging the local extinction of keystone species.


2017 ◽  
Vol 15 (1) ◽  
Author(s):  
André Lincoln Barroso Magalhães ◽  
Claudia Maria Jacobi

ABSTRACT Headwater creeks are environments susceptible to invasion by non-native fishes. We evaluated the reproduction of 22 populations of the non-native livebearers guppy Poecilia reticulata, black molly Poecilia sphenops, Yucatan molly Poecilia velifera, green swordtail Xiphophorus hellerii, southern platyfish Xiphophorus maculatus, and variable platyfish Xiphophorus variatus during an annual cycle in five headwater creeks located in the largest South American ornamental aquaculture center, Paraíba do Sul River basin, southeastern Brazil. With few exceptions, females of most species were found reproducing (stages 2, 3, 4) all year round in the creeks and gravid females of all species showed small sizes indicating stunting. Juveniles were frequent in all sites. The fecundity of the six poeciliids was always low in all periods. The sex ratio was biased for females in most species, both bimonthly as for the whole period. Water temperature, water level and rainfall were not significantly correlated with reproduction in any species. Therefore, most populations appeared well established. The pertinence of different management actions, such as devices to prevent fish escape, eradication with rotenone and research about negative effects on native species, is discussed in the light of current aquaculture practices in the region.


2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.


2021 ◽  
Vol 13 (8) ◽  
pp. 1495
Author(s):  
Jehyeok Rew ◽  
Yongjang Cho ◽  
Eenjun Hwang

Species distribution models have been used for various purposes, such as conserving species, discovering potential habitats, and obtaining evolutionary insights by predicting species occurrence. Many statistical and machine-learning-based approaches have been proposed to construct effective species distribution models, but with limited success due to spatial biases in presences and imbalanced presence-absences. We propose a novel species distribution model to address these problems based on bootstrap aggregating (bagging) ensembles of deep neural networks (DNNs). We first generate bootstraps considering presence-absence data on spatial balance to alleviate the bias problem. Then we construct DNNs using environmental data from presence and absence locations, and finally combine these into an ensemble model using three voting methods to improve prediction accuracy. Extensive experiments verified the proposed model’s effectiveness for species in South Korea using crowdsourced observations that have spatial biases. The proposed model achieved more accurate and robust prediction results than the current best practice models.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Billy Joel M. Almarinez ◽  
Mary Jane A. Fadri ◽  
Richard Lasina ◽  
Mary Angelique A. Tavera ◽  
Thaddeus M. Carvajal ◽  
...  

Comperiella calauanica is a host-specific endoparasitoid and effective biological control agent of the diaspidid Aspidiotus rigidus, whose outbreak from 2010 to 2015 severely threatened the coconut industry in the Philippines. Using the maximum entropy (Maxent) algorithm, we developed a species distribution model (SDM) for C. calauanica based on 19 bioclimatic variables, using occurrence data obtained mostly from field surveys conducted in A. rigidus-infested areas in Luzon Island from 2014 to 2016. The calculated the area under the ROC curve (AUC) values for the model were very high (0.966, standard deviation = 0.005), indicating the model’s high predictive power. Precipitation seasonality was found to have the highest relative contribution to model development. Response curves produced by Maxent suggested the positive influence of mean temperature of the driest quarter, and negative influence of precipitation of the driest and coldest quarters on habitat suitability. Given that C. calauanica has been found to always occur with A. rigidus in Luzon Island due to high host-specificity, the SDM for the parasitoid may also be considered and used as a predictive model for its host. This was confirmed through field surveys conducted between late 2016 and early 2018, which found and confirmed the occurrence of A. rigidus in three areas predicted by the SDM to have moderate to high habitat suitability or probability of occurrence of C. calauanica: Zamboanga City in Mindanao; Isabela City in Basilan Island; and Tablas Island in Romblon. This validation in the field demonstrated the utility of the bioclimate-based SDM for C. calauanica in predicting habitat suitability or probability of occurrence of A. rigidus in the Philippines.


Sign in / Sign up

Export Citation Format

Share Document