scholarly journals Mexican agricultural frontier communities differ in forest dynamics with consequences for conservation and restoration

2021 ◽  
Author(s):  
Madelon Lohbeck ◽  
Ben DeVries ◽  
Frans Bongers ◽  
Miguel Martinez-Ramos ◽  
Armando Navarrete-Segueda ◽  
...  

Forest regrowth is key to achieve restoration commitments, but we need to better understand under what circumstances it takes place and how long secondary forests persist. We studied a recently colonized agricultural frontier in southern Mexico. We quantified the spatiotemporal dynamics of forest loss and regrowth and tested how temporal variation in climate, and spatial variation in land availability, land quality and accessibility affect forest disturbance, regrowth and secondary forest persistence. Marqués de Comillas consistently exhibits more forest loss than regrowth, resulting in a net decrease of 30% forest cover (1991-2016). Secondary forest cover remained relatively constant while secondary forest persistence increased, suggesting that farmers are moving away from shifting cultivation. Temporal variation in disturbance and regrowth were explained by the annual variation in the Oceanic El Niño index combined with dry season rainfall and key policy and market interventions.Across communities the availability of high-quality soil overrules the effects of land availability and accessibility, but that at the pixel-level all three factors contributed to explaining forest conservation and restoration. Communities with more high-quality soils were able to spare land for forest conservation, and had less secondary forest that persisted for longer. Old forest and secondary forests were better represented on low-quality lands and on communal land. Both old and secondary forest were less common close to the main road, where secondary forests were also less persistent. Forest conservation and restoration can be explained by a complex interplay of biophysical and social drivers across time, space and scale. We warrant that stimulating private land ownership may cause remaining forest patches to be lost and that conservation initiatives should benefit the whole community. Forest regrowth and secondary forest persistence competes with agricultural production and ensuring farmers can access restoration benefits is key to success.

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 817
Author(s):  
Marina Palmero-Iniesta ◽  
Josep Maria Espelta ◽  
Mario Padial-Iglesias ◽  
Òscar Gonzàlez-Guerrero ◽  
Lluís Pesquer ◽  
...  

Farmland abandonment has been a widespread land-use change in the Iberian Peninsula since the second half of the 20th century, leading to the establishment of secondary forests across the region. In this study, we aimed to address changes in the recent (1985–2014) emergence patterns of these forests and examine how environmental factors affected their growth by considering differences in leaf-habit types. We used a combination of Landsat-derived land-cover maps and aboveground biomass (AGB) maps from the European Space Agency to assess the secondary forest establishment and growth, respectively, in the study region. We also obtained a set of topographic, climatic and landscape variables from diverse GIS layers and used them for determining changes over time in the environmental drivers of forest establishment and AGB using general linear models. The results highlight that secondary forest cover was still increasing in the Iberian Peninsula at a rate above the European average. Yet, they also indicate a directional change in the emergence of secondary forests towards lower and less steep regions with higher water availability (mean rainfall and SPEI) and less forest cover but are subjected to greater drought events. In addition, these environmental factors differentially affect the growth of forests with different leaf-habit types: i.e., needleleaf secondary forests being less favoured by high temperature and precipitation, and broadleaf deciduous forests being most negatively affected by drought. Finally, these spatial patterns of forest emergence and the contrasting responses of forest leaf-habits to environmental factors explained the major development of broadleaf evergreen compared to broadleaf deciduous forests and, especially, needleleaf secondary forests. These results will improve the knowledge of forest dynamics that have occurred in the Iberian Peninsula in recent decades and provide an essential tool for understanding the potential effects of climate warming on secondary forest growth.


2002 ◽  
Vol 46 (1) ◽  
Author(s):  
Dietrich Schmidt-Vogt

AbstractManagement of secondary tropical forests: a new perspective for sustainable use of forests in Asia. The decline of primary forests in the tropics is leading to a reassessment of the role secondary forests might play within the context of tropical forest management. Recent research has shown that secondary forests in the tropics can be both rich in species and complex in terms of stand structure. There is, moreover, a growing recognition of the importance of secondary forests for traditional subsistence economies in the tropics and of their economic potential for land use systems in the future. Management of secondary forests in Asia as an alternative to the extraction of timber from primary forests but also as one among other options to intensify traditional land use systems has a potential for the future especially because of the existence of vast tracts of valuable secondary forest cover, and because of the store of traditional knowledge that can still be found in tropical Asia.


2021 ◽  
Author(s):  
Viola Heinrich ◽  
Ricardo Dalagnol ◽  
Henrique Cassol ◽  
Thais Rosan ◽  
Catherine Torres de Almeida ◽  
...  

<p>Overall, global forests are expected to contribute about a quarter of pledged mitigation under the Paris Agreement, by limiting deforestation and by encouraging forest regrowth.</p><p>Secondary Forests in the Neo-tropics have a large climate mitigation potential, given their ability to sequester carbon up to 20 times faster than old-growth forests. However, this rate does not account for the spatial patterns in secondary forest regrowth influenced by regional and local-scale environmental and anthropogenic disturbance drivers.</p><p>Secondary Forests in the Brazilian Amazon are expected to play a key role in achieving the goals of the Paris Agreement, however, the Amazon is a large and geographically complex region such that regrowth rates are not uniform across the biome.</p><p>To understand the impact of key drivers we used a multi-satellite data approach with the aim of understanding the spatial variations in secondary forest regrowth in the Brazilian Amazon. We mapped secondary forest area and age using a land-use-land-cover dataset – MapBiomas – and, combined with the European Space Agency Aboveground Carbon dataset, constructed regional regrowth curves for the year 2017.</p><p>We found large variations in the regrowth rates across the Brazilian Amazon due to large-scale environmental drivers such as rainfall and shortwave-radiation. Regrowth rates are similar to previous pan-Amazonian estimates in the North-West (3 ±1.0 MgC ha<sup>-1</sup> yr<sup>-1</sup>), which are double than those in the North-East Amazon (1.3 ±0.3 MgC ha<sup>-1</sup> yr<sup>-1</sup>). The impact of anthropogenic disturbances, namely fire and repeated deforestation prior to the most recent regrowth only reduces the regrowth by 20% in the North-West (2.4 ±0.8 MgC ha<sup>-1</sup> yr<sup>-1</sup>) compared to 55% in the North-East (0.8 ±0.8 MgC ha<sup>-1</sup> yr<sup>-1</sup>). Overall, secondary forest carbon stock of 294 TgC in the year 2017, could have been 8% higher with avoided fires and repeat deforestation.<strong> </strong>We found that the 2017 area of secondary forest, which occupies only ~4% of the Brazilian Amazon biome, can contribute significantly (~5.5%) to Brazil’s net emissions reduction targets, accumulating ~19.0 TgC yr<sup>-1</sup>until 2030 if the current area of secondary forest is maintained (13.8 Mha). However,this value reduces rapidly to less than 1% if only secondary forests older than 20 years are preserved (2.2 Mha).</p><p>Preserving the remaining old-growth forest carbon stock and implementing legal mechanisms to protect and expand secondary forest areas are key to realising the potential of secondary forest as a nature-based climate change mitigation solution.</p>


2010 ◽  
Vol 14 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Arlete Silva de Almeida ◽  
Thomas A. Stone ◽  
Ima Célia G. Vieira ◽  
Eric A. Davidson

Abstract While interest in Amazonian deforestation mostly focuses on frontier areas, the amount of forest cover in areas already dominated by human settlement is also changing. Secondary forests play an increasingly important role for maintaining genetic diversity, hydrological functioning, and greenhouse gas emissions of altered landscapes, but secondary forests are also being converted to more intensive agricultural uses. Five dates of Landsat imagery from 1984 to 2002 were analyzed, covering 8000 km2 of the Zona Bragantina of the eastern part of the Brazilian state of Pará, which underwent its most intensive wave of deforestation several decades ago. However, even in this area of relatively long-term human occupation, ongoing decreases of forest cover were found, both in the small remaining areas of mature forest and in the more widespread areas of secondary forests, as human population increased and land use intensified. Although there was an initial increase in the area of secondary forest from 1984 to 1994, there has been a steady decline since then, from 75% secondary forest cover in 1994 to 54% in 2002. The amount of pasture was relatively stable from 1984 to 1994 but more recently has shown a steady increase, reaching 37% cover in 2002. The average rate of carbon loss over the 18-yr study period was 0.9 Mg C ha−1 yr−1 for the 8000 km2 study area. Forests in this long-settled region of eastern Amazonia continue to be degraded, resulting in the loss of ecosystem services and carbon stocks due to continued land-use change.


2018 ◽  
Vol 10 (12) ◽  
pp. 1980 ◽  
Author(s):  
Xavier Haro-Carrión ◽  
Jane Southworth

Understanding forest cover changes is especially important in highly threatened and understudied tropical dry forest landscapes. This research uses Landsat images and a Random Forest classifier (RF) to map old-growth, secondary, and plantation forests and to evaluate changes in their coverage in Ecuador. We used 46 Landsat-derived predictors from the dry and wet seasons to map these forest types and to evaluate the importance of having seasonal variables in classifications. Initial RF models grouped old-growth and secondary forest as a single class because of a lack of secondary forest training data. The model accuracy was improved slightly from 92.8% for the wet season and 94.6% for the dry season to 95% overall by including variables from both seasons. Derived land cover maps indicate that the remaining forest in the landscape occurs mostly along the coastline in a matrix of pastureland, with less than 10% of the landscape covered by plantation forests. To obtain secondary forest training data and evaluate changes in forest cover, we conducted a change analysis between the 1990 and 2015 images. The results indicated that half of the forests present in 1990 were cleared during the 25-year study period and highlighted areas of forest regrowth. We used these areas to extract secondary forest training data and then re-classified the landscape with secondary forest as a class. Classification accuracies decreased with more forest classes, but having data from both seasons resulted in higher accuracy (87.9%) compared to having data from only the wet (85.8%) or dry (82.9%) seasons. The produced cover maps classified the majority of previously identified forest areas as secondary, but these areas likely correspond to forest regrowth and to degraded forests that structurally resemble secondary forests. Among the few areas classified as old-growth forests are known reserves. This research provides evidence of the importance of using bi-seasonal Landsat data to classify forest types and contributes to understanding changes in forest cover of tropical dry forests.


2016 ◽  
Vol 2 (3) ◽  
pp. e1500965 ◽  
Author(s):  
Andrés Viña ◽  
William J. McConnell ◽  
Hongbo Yang ◽  
Zhenci Xu ◽  
Jianguo Liu

Forest loss is one of the most pervasive land surface transformations on Earth, with drastic effects on global climate, ecosystems, and human well-being. As part of biodiversity conservation and climate change mitigation efforts, many countries, including China, have been implementing large-scale policies to conserve and restore forests. However, little is known about the effectiveness of these policies, and information on China’s forest dynamics at the national level has mainly relied on official statistics. In response to international calls for improved reliability and transparency of information on biodiversity conservation and climate change mitigation efforts, it is crucial to independently verify government statistics. Furthermore, if forest recovery is verified, it is essential to assess the degree to which this recovery is attributable to policy, within the context of other relevant factors. We assess the dynamics of forest cover in China between 2000 and 2010 and evaluate the effectiveness of one of the largest forest conservation programs in the world—the Natural Forest Conservation Program (NFCP). Results indicate that forest cover has significantly increased in around 1.6% of China’s territory and that the areas exhibiting forest gain experienced a combined increase in net primary productivity (ca. 0.9 Tg of carbon). Among the variables evaluated at county level, the NFCP exhibited a significantly positive relation with forest gain, whereas reduction in rural labor showed a negative relationship with both forest loss and gain. Findings such as these have global implications for forest conservation and climate change mitigation efforts.


2010 ◽  
Vol 7 (2) ◽  
pp. 2739-2765 ◽  
Author(s):  
X. Yang ◽  
T. K. Richardson ◽  
A. K. Jain

Abstract. We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates the significance of secondary forests to terrestrial carbon sinks, the importance of nitrogen dynamics to the magnitude of secondary forests carbon uptake, and therefore the need to include both primary and secondary forests and nitrogen dynamics in terrestrial ecosystem models.


2022 ◽  
Author(s):  
Jefferson S. Hall ◽  
Joshua S. Plisinski ◽  
Stephanie K. Mladinich ◽  
Michiel van Breugel ◽  
Hao Ran Lai ◽  
...  

Abstract Context Tropical forest loss has a major impact on climate change. Secondary forest growth has potential to mitigate these impacts, but uncertainty regarding future land use, remote sensing limitations, and carbon model accuracy have inhibited understanding the range of potential future carbon dynamics. Objectives We evaluated the effects of four scenarios on carbon stocks and sequestration in a mixed-use landscape based on Recent Trends (RT), Accelerated Deforestation (AD), Grow Only (GO), and Grow Everything (GE) scenarios. Methods Working in central Panama, we coupled a 1-ha resolution LiDAR derived carbon map with a locally derived secondary forest carbon accumulation model. We used Dinamica EGO 4.0.5 to spatially simulate forest loss across the landscape based on recent deforestation rates. We used local studies of belowground, woody debris, and liana carbon to estimate ecosystem scale carbon fluxes. Results Accounting for 58.6 percent of the forest in 2020, secondary forests (< 50 years) accrue 88.9 percent of carbon in the GO scenario by 2050. RT and AD scenarios lost 36,707 and 177,035 ha of forest respectively by 2030, a carbon gain of 7.7 million Mg C (RT) and loss of 2.9 million Mg C (AD). Growing forest on all available land (GE) could achieve 56 percent of Panama’s land-based carbon sequestration goal by 2050. Conclusions Our estimates of potential carbon storage demonstrate the important contribution of secondary forests to land-based carbon sequestration in central Panama. Protecting these forests will contribute significantly to meeting Panama’s climate change mitigation goals and enhance water security.


2018 ◽  
Vol 46 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Jennifer Hewson ◽  
Julie Hanta Razafimanahaka ◽  
Timothy Max Wright ◽  
Rina Mandimbiniaina ◽  
Mark Mulligan ◽  
...  

SummaryDecision-makers need readily accessible tools to understand the potential impacts of alternative policies on forest cover and greenhouse gas (GHG) emissions and to develop effective policies to meet national and international targets for biodiversity conservation, sustainable development and climate change mitigation. Land change modelling can support policy decisions by demonstrating potential impacts of policies on future deforestation and GHG emissions. We modelled land change to explore the potential impacts of expert-informed scenarios on deforestation and GHG emissions, specifically CO2 emissions, in the Ankeniheny–Zahamena Corridor in eastern Madagascar. We considered four scenarios: business as usual; effective conservation of protected areas; investment in infrastructure; and agricultural intensification. Our results highlight that effective forest conservation could deliver substantial emissions reductions, while infrastructure development will likely cause forest loss in new areas. Agricultural intensification could prevent additional forest loss if it reduced the need to clear more land while improving food security. Our study demonstrates how available land change modelling tools and scenario analyses can inform land-use policies, helping countries reconcile economic development with forest conservation and climate change mitigation commitments.


Sign in / Sign up

Export Citation Format

Share Document