scholarly journals The Role of Recent (1985–2014) Patterns of Land Abandonment and Environmental Factors in the Establishment and Growth of Secondary Forests in the Iberian Peninsula

Land ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 817
Author(s):  
Marina Palmero-Iniesta ◽  
Josep Maria Espelta ◽  
Mario Padial-Iglesias ◽  
Òscar Gonzàlez-Guerrero ◽  
Lluís Pesquer ◽  
...  

Farmland abandonment has been a widespread land-use change in the Iberian Peninsula since the second half of the 20th century, leading to the establishment of secondary forests across the region. In this study, we aimed to address changes in the recent (1985–2014) emergence patterns of these forests and examine how environmental factors affected their growth by considering differences in leaf-habit types. We used a combination of Landsat-derived land-cover maps and aboveground biomass (AGB) maps from the European Space Agency to assess the secondary forest establishment and growth, respectively, in the study region. We also obtained a set of topographic, climatic and landscape variables from diverse GIS layers and used them for determining changes over time in the environmental drivers of forest establishment and AGB using general linear models. The results highlight that secondary forest cover was still increasing in the Iberian Peninsula at a rate above the European average. Yet, they also indicate a directional change in the emergence of secondary forests towards lower and less steep regions with higher water availability (mean rainfall and SPEI) and less forest cover but are subjected to greater drought events. In addition, these environmental factors differentially affect the growth of forests with different leaf-habit types: i.e., needleleaf secondary forests being less favoured by high temperature and precipitation, and broadleaf deciduous forests being most negatively affected by drought. Finally, these spatial patterns of forest emergence and the contrasting responses of forest leaf-habits to environmental factors explained the major development of broadleaf evergreen compared to broadleaf deciduous forests and, especially, needleleaf secondary forests. These results will improve the knowledge of forest dynamics that have occurred in the Iberian Peninsula in recent decades and provide an essential tool for understanding the potential effects of climate warming on secondary forest growth.

2002 ◽  
Vol 46 (1) ◽  
Author(s):  
Dietrich Schmidt-Vogt

AbstractManagement of secondary tropical forests: a new perspective for sustainable use of forests in Asia. The decline of primary forests in the tropics is leading to a reassessment of the role secondary forests might play within the context of tropical forest management. Recent research has shown that secondary forests in the tropics can be both rich in species and complex in terms of stand structure. There is, moreover, a growing recognition of the importance of secondary forests for traditional subsistence economies in the tropics and of their economic potential for land use systems in the future. Management of secondary forests in Asia as an alternative to the extraction of timber from primary forests but also as one among other options to intensify traditional land use systems has a potential for the future especially because of the existence of vast tracts of valuable secondary forest cover, and because of the store of traditional knowledge that can still be found in tropical Asia.


2021 ◽  
Author(s):  
Madelon Lohbeck ◽  
Ben DeVries ◽  
Frans Bongers ◽  
Miguel Martinez-Ramos ◽  
Armando Navarrete-Segueda ◽  
...  

Forest regrowth is key to achieve restoration commitments, but we need to better understand under what circumstances it takes place and how long secondary forests persist. We studied a recently colonized agricultural frontier in southern Mexico. We quantified the spatiotemporal dynamics of forest loss and regrowth and tested how temporal variation in climate, and spatial variation in land availability, land quality and accessibility affect forest disturbance, regrowth and secondary forest persistence. Marqués de Comillas consistently exhibits more forest loss than regrowth, resulting in a net decrease of 30% forest cover (1991-2016). Secondary forest cover remained relatively constant while secondary forest persistence increased, suggesting that farmers are moving away from shifting cultivation. Temporal variation in disturbance and regrowth were explained by the annual variation in the Oceanic El Niño index combined with dry season rainfall and key policy and market interventions.Across communities the availability of high-quality soil overrules the effects of land availability and accessibility, but that at the pixel-level all three factors contributed to explaining forest conservation and restoration. Communities with more high-quality soils were able to spare land for forest conservation, and had less secondary forest that persisted for longer. Old forest and secondary forests were better represented on low-quality lands and on communal land. Both old and secondary forest were less common close to the main road, where secondary forests were also less persistent. Forest conservation and restoration can be explained by a complex interplay of biophysical and social drivers across time, space and scale. We warrant that stimulating private land ownership may cause remaining forest patches to be lost and that conservation initiatives should benefit the whole community. Forest regrowth and secondary forest persistence competes with agricultural production and ensuring farmers can access restoration benefits is key to success.


2009 ◽  
Vol 25 (3) ◽  
pp. 281-300 ◽  
Author(s):  
Joseph Hawes ◽  
Catarina da Silva Motta ◽  
William L. Overal ◽  
Jos Barlow ◽  
Toby A. Gardner ◽  
...  

Abstract:The response of tropical fauna to landscape-level habitat change is poorly understood. Increased conversion of native primary forest to alternative land-uses, including secondary forest and exotic tree plantations, highlights the importance of assessing diversity patterns within these forest types. We sampled 1848 moths from 335 species of Arctiidae, Saturniidae and Sphingidae, over a total of 30 trap-nights. Sampling was conducted during the wet season 2005, using three light-traps at 15 sites within areas of primary forest, secondary forest and Eucalyptus urograndis plantations in northern Brazilian Amazonia. The Jari study region provides one of the best opportunities to investigate the ecological consequences of land-use change, and this study is one of the first to examine patterns of diversity for a neotropical moth assemblage in a human-dominated landscape in lowland Amazonia. We found that the three moth families responded consistently to disturbance in terms of abundance and community structure but variably in terms of species richness, in a manner apparently supporting a life-history hypothesis. Our results suggest that secondary forests and Eucalyptus plantations can support a substantial level of moth diversity but also show that these forest types hold assemblages with significantly distinct community structures and composition from primary forest. In addition, the ability of these converted land-uses to support primary forest species may be enhanced by proximity to surrounding primary forest, an issue which requires consideration when assessing the diversity and composition of mobile taxa in human-dominated landscapes.


2010 ◽  
Vol 14 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Arlete Silva de Almeida ◽  
Thomas A. Stone ◽  
Ima Célia G. Vieira ◽  
Eric A. Davidson

Abstract While interest in Amazonian deforestation mostly focuses on frontier areas, the amount of forest cover in areas already dominated by human settlement is also changing. Secondary forests play an increasingly important role for maintaining genetic diversity, hydrological functioning, and greenhouse gas emissions of altered landscapes, but secondary forests are also being converted to more intensive agricultural uses. Five dates of Landsat imagery from 1984 to 2002 were analyzed, covering 8000 km2 of the Zona Bragantina of the eastern part of the Brazilian state of Pará, which underwent its most intensive wave of deforestation several decades ago. However, even in this area of relatively long-term human occupation, ongoing decreases of forest cover were found, both in the small remaining areas of mature forest and in the more widespread areas of secondary forests, as human population increased and land use intensified. Although there was an initial increase in the area of secondary forest from 1984 to 1994, there has been a steady decline since then, from 75% secondary forest cover in 1994 to 54% in 2002. The amount of pasture was relatively stable from 1984 to 1994 but more recently has shown a steady increase, reaching 37% cover in 2002. The average rate of carbon loss over the 18-yr study period was 0.9 Mg C ha−1 yr−1 for the 8000 km2 study area. Forests in this long-settled region of eastern Amazonia continue to be degraded, resulting in the loss of ecosystem services and carbon stocks due to continued land-use change.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170312 ◽  
Author(s):  
Kieran Withey ◽  
Erika Berenguer ◽  
Alessandro Ferraz Palmeira ◽  
Fernando D. B. Espírito-Santo ◽  
Gareth D. Lennox ◽  
...  

Wildfires produce substantial CO 2 emissions in the humid tropics during El Niño-mediated extreme droughts, and these emissions are expected to increase in coming decades. Immediate carbon emissions from uncontrolled wildfires in human-modified tropical forests can be considerable owing to high necromass fuel loads. Yet, data on necromass combustion during wildfires are severely lacking. Here, we evaluated necromass carbon stocks before and after the 2015–2016 El Niño in Amazonian forests distributed along a gradient of prior human disturbance. We then used Landsat-derived burn scars to extrapolate regional immediate wildfire CO 2 emissions during the 2015–2016 El Niño. Before the El Niño, necromass stocks varied significantly with respect to prior disturbance and were largest in undisturbed primary forests (30.2 ± 2.1 Mg ha −1 , mean ± s.e.) and smallest in secondary forests (15.6 ± 3.0 Mg ha −1 ). However, neither prior disturbance nor our proxy of fire intensity (median char height) explained necromass losses due to wildfires. In our 6.5 million hectare (6.5 Mha) study region, almost 1 Mha of primary (disturbed and undisturbed) and 20 000 ha of secondary forest burned during the 2015–2016 El Niño. Covering less than 0.2% of Brazilian Amazonia, these wildfires resulted in expected immediate CO 2 emissions of approximately 30 Tg, three to four times greater than comparable estimates from global fire emissions databases. Uncontrolled understorey wildfires in humid tropical forests during extreme droughts are a large and poorly quantified source of CO 2 emissions. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2022 ◽  
Author(s):  
Jefferson S. Hall ◽  
Joshua S. Plisinski ◽  
Stephanie K. Mladinich ◽  
Michiel van Breugel ◽  
Hao Ran Lai ◽  
...  

Abstract Context Tropical forest loss has a major impact on climate change. Secondary forest growth has potential to mitigate these impacts, but uncertainty regarding future land use, remote sensing limitations, and carbon model accuracy have inhibited understanding the range of potential future carbon dynamics. Objectives We evaluated the effects of four scenarios on carbon stocks and sequestration in a mixed-use landscape based on Recent Trends (RT), Accelerated Deforestation (AD), Grow Only (GO), and Grow Everything (GE) scenarios. Methods Working in central Panama, we coupled a 1-ha resolution LiDAR derived carbon map with a locally derived secondary forest carbon accumulation model. We used Dinamica EGO 4.0.5 to spatially simulate forest loss across the landscape based on recent deforestation rates. We used local studies of belowground, woody debris, and liana carbon to estimate ecosystem scale carbon fluxes. Results Accounting for 58.6 percent of the forest in 2020, secondary forests (< 50 years) accrue 88.9 percent of carbon in the GO scenario by 2050. RT and AD scenarios lost 36,707 and 177,035 ha of forest respectively by 2030, a carbon gain of 7.7 million Mg C (RT) and loss of 2.9 million Mg C (AD). Growing forest on all available land (GE) could achieve 56 percent of Panama’s land-based carbon sequestration goal by 2050. Conclusions Our estimates of potential carbon storage demonstrate the important contribution of secondary forests to land-based carbon sequestration in central Panama. Protecting these forests will contribute significantly to meeting Panama’s climate change mitigation goals and enhance water security.


Author(s):  
Oliver T. Coomes ◽  
Margaret Kalacska ◽  
Yoshito Takasaki ◽  
Christian Abizaid ◽  
Tristan Grupp

Abstract Recent studies point to a rapid increase in small-scale deforestation in Amazonia. Where people live along the rivers of the basin, customary shifting cultivation creates a zone of secondary forest, orchards and crop fields around communities in what was once was old-growth terra firme forest. Visible from satellite imagery as a narrow but extensive band of forest disturbance along rivers, this zone is often considered as having been deforested. In this paper we assess forest disturbance and the dynamics of secondary forests around 275 communities along a 725 km transect on the Napo and Amazon rivers in the Peruvian Amazon. We used high-resolution satellite imagery to define the ‘working area’ around each community, based on the spatial distribution of forest/field patches and the visible boundary between old-growth and secondary forests. Land cover change was assessed between ca. 1989 and 2015 using CLASliteTM image classification. Statistical analyses using community and household-level data from the Peruvian Amazon Rural Livelihoods and Poverty (PARLAP) Project identified the predictors of the extent of forest disturbance and the dynamics of secondary forests around communities. Although shifting cultivation is the primary driver of old-growth forest loss, we find that secondary forest cover which replaces old-growth forests is stable through time, and that both the area and rate of expansion into old-growth forests are modest when compared to forest conversion in Peru for colonization and plantation development. Our findings challenge the notion that smallholder agriculture along rivers is an important threat to terra firme forests in Amazonia and point to the importance of protecting forests on community lands from loggers, colonists and other outsiders.


2018 ◽  
pp. 107-130 ◽  
Author(s):  
T. V. Chernenkova ◽  
O. V. Morozova ◽  
N. G. Belyaeva ◽  
M. Yu. Puzachenko

This study aimed at an investigation of the structure, ecology and mapping of mixed communities with the participation of spruce, pine and broad-leave trees in one of the regions of broad-leave–coniferous zone. Despite the long history of the nature use of the study area, including forestry practices (Kurnayev, 1968; Rysin, Saveliyeva, 2007; Arkhipova, 2014; Belyaeva, Popov, 2016), the communities kept the main features of the indigenous forests of the broad-leave–coniferous zone ­— the tree species polydominance of the stands, the multilayer structure of communities and the high species diversity. In the course of field works in the southwestern part of the Moscow Region (2000–2016) 120 relevés were made. Spatial structure, species composition as well as cover values (%) of all vascular plants and bryophytes were recorded in each stand. The relevés were analysed following the ecology-phytocenotic classification approach and methods of multivariate statistical analysis that allowed correctly to differentiate communities according the broad-leave species participation. The accuracy of the classification based on the results of discriminant analysis was 95.8 %. Evaluation of the similarity of the selected units was carried out with the help of cluster analysis (Fig. 12). Clustering into groups is performed according to the activity index of species (A) (Malyshev, 1973) within the allocated syntaxon using Euclidean distance and Ward’s method. The classification results are corrected by DCA ordination in PC-ORD 5.0 (McCune, Mefford, 2006) (Fig. 1). Spatial mapping of forest cover was carried out on the basis of ground data, Landsat satellite images (Landsat 5 TM, 7 ETM +, 8 OLI_TIRS), digital elevation (DEM) and statistical methods (Puzachenko et al., 2014; Chernenkova et al., 2015) (Fig. 13 а, б). The obtained data and the developed classification refine the existing understanding of the phytocenotic structure of the forest cover of the broad-leave–coniferous zone. Three forest formation groups with different shares of broad-leave species in the canopy with seven groups of associations were described: a) coniferous forests with broad-leave species (small- and broad-herb spruce forests with oak and lime (1)); broad-herb spruce forests with oak and lime (2); small- and broad-herb pine forests with spruce, lime, oak and hazel (3); broad-herb pine forests with lime, oak and hazel (4)), b) broad-leave–coniferous forests (broad-herb spruce–broad-leave forests (5)), and c) broad-leave forests (broad-herb oak forests (6), broad-herb lime forests (7)). In the row of discussed syntaxa from 1 to 7 group, the change in the ratio of coniferous and broad-leave species of the tree layer (A) reflects re­gular decrease in the participation of spruce in the plant cover (from 66 to 6 %; Fig. 3 A1, A2) and an increase in oak and lime more than threefold (from 15 to 65 %; Fig. 4 a). Nemoral species predominate in the composition of ground layers, the cove­rage of which increases (from 40 to 80 %) in the range from 1 to 7 group, the coverage of the boreal group varies from 55 to 8 % (Fig. 11) while maintaining the presence of these species, even in nemoral lime and oak forests. In forests with equal share of broad-leave and coniferous trees (group 5) the nemoral species predominate in herb layer. In oak forests (group 6) the species of the nitro group are maximally represented, which is natural for oak forests occurring on rich soils, and also having abundant undergrowth of hazel. Practically in all studied groups the presence of both coniferous (in particular, spruce) and broad-leave trees in undergrowth (B) and ground layer (C) were present in equal proportions (Fig. 3). This does not confirm the unambiguity of the enrichment with nemoral species and increase in their cover in complex spruce and pine forests in connection with the climate warming in this region, but rather indicates on natural change of the main tree species in the cenopopulations. Further development of the stand and the formation of coni­ferous or broad-leave communities is conditioned by landscape. It is proved that the distribution of different types of communities is statistically significant due to the relief. According to the results of the analysis of remote information, the distribution areas of coniferous forests with broad-leave species, mixed and broad-leave forest areas for the study region are represented equally. The largest massifs of broad-leave–coniferous forests are located in the central and western parts of the study area, while in the eastern one the broad-leave forests predominate, that is a confirmation of the zonal ecotone (along the Pakhra River: Petrov, Kuzenkova, 1968) from broad-leave–coniferous forests to broad-leave forests.


2021 ◽  
Vol 13 (11) ◽  
pp. 2131
Author(s):  
Jamon Van Den Hoek ◽  
Alexander C. Smith ◽  
Kaspar Hurni ◽  
Sumeet Saksena ◽  
Jefferson Fox

Accurate remote sensing of mountainous forest cover change is important for myriad social and ecological reasons, but is challenged by topographic and illumination conditions that can affect detection of forests. Several topographic illumination correction (TIC) approaches have been developed to mitigate these effects, but existing research has focused mostly on whether TIC improves forest cover classification accuracy and has usually found only marginal gains. However, the beneficial effects of TIC may go well beyond accuracy since TIC promises to improve detection of low illuminated forest cover and thereby normalize measurements of the amount, geographic distribution, and rate of forest cover change regardless of illumination. To assess the effects of TIC on the extent and geographic distribution of forest cover change, in addition to classification accuracy, we mapped forest cover across mountainous Nepal using a 25-year (1992–2016) gap-filled Landsat time series in two ways—with and without TIC (i.e., nonTIC)—and classified annual forest cover using a Random Forest classifier. We found that TIC modestly increased classifier accuracy and produced more conservative estimates of net forest cover change across Nepal (−5.2% from 1992–2016) TIC. TIC also resulted in a more even distribution of forest cover gain across Nepal with 3–5% more net gain and 4–6% more regenerated forest in the least illuminated regions. These results show that TIC helped to normalize forest cover change across varying illumination conditions with particular benefits for detecting mountainous forest cover gain. We encourage the use of TIC for satellite remote sensing detection of long-term mountainous forest cover change.


Human Ecology ◽  
2021 ◽  
Author(s):  
Adam Pain ◽  
Kristina Marquardt ◽  
Dil Khatri

AbstractWe provide an analytical contrast of the dynamics of secondary forest regeneration in Nepal and Peru framed by a set of common themes: land access, boundaries, territories, and rights, seemingly more secure in Nepal than Peru; processes of agrarian change and their consequences for forest-agriculture interactions and the role of secondary forest in the landscape, more marked in Peru, where San Martín is experiencing apparent agricultural intensification, than in Nepal; and finally processes of social differentiation that have consequences for different social groups, livelihood construction and their engagement with trees, common to both countries. These themes address the broader issue of the necessary conditions for secondary forest regeneration and the extent to which the rights and livelihood benefits of those actively managing it are secured.


Sign in / Sign up

Export Citation Format

Share Document