Selectivity of oxygen delignification for southern softwood kraft pulps with high lignin content

TAPPI Journal ◽  
2011 ◽  
Vol 10 (8) ◽  
pp. 29-39 ◽  
Author(s):  
LI TAO ◽  
JOSEPH M. GENCO ◽  
BARBARA J.W. COLE ◽  
RAYMOND C. FORT

The selectivity of kraft pulping versus the oxygen delignification processes over the range of kappa nos. 25–90 was compared. Kraft pulping was found to be more selective than oxygen delignification for removing lignin from southern softwood kraft pulps. The greater selectivity is thought to be related to hydroxyl radicals that form in the oxygen delignification process that are not present in the kraft process. The hydroxyl radicals attack the carbohydrates and randomly cleave the polymeric chains, causing a significant decrease in the degree of carbohydrate polymerization and thus a loss of viscosity. Kraft pulping generates hydrosulfide ions that are highly selective and attack the lignin. Carbohydrate degradation occurs mainly from peeling reactions, which do not appreciably reduce the degree of polymerization of the cellulose and thus there is less viscosity loss. At low lignin content (i.e., low kappa number), the remaining lignin is likely bound covalently to the carbohydrate portion in both processes. Therefore, removal of the lignin results in significant degradation of the carbohydrates.

BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7301-7310
Author(s):  
Veronika Majová ◽  
Silvia Horanová ◽  
Andrea Škulcová ◽  
Jozef Šima ◽  
Michal Jablonský

This study aimed to resolve the issue of the lack of detailed understanding of the effect of initial lignin content in hardwood kraft pulps on pulp delignification by deep eutectic solvents. The authors used Kappa number of the concerned pulp, intrinsic viscosity, and selectivity and efficiency of delignification as the parameters of the effect. The pulp (50 g oven dry pulp) was treated with four different DESs systems based on choline chloride with lactic acid (1:9), oxalic acid (1:1), malic acid (1:1), and system alanine:lactic acid (1:9); the results were compared to those reached by oxygen delignification. The results showed that the pulp with a higher initial lignin content had a greater fraction of easily removed lignin fragments.


2012 ◽  
Vol 36 (6) ◽  
pp. 1163-1172 ◽  
Author(s):  
María Graciela Aguayo ◽  
Regis Teixeira Mendonça ◽  
Paulina Martínez ◽  
Jaime Rodríguez ◽  
Miguel Pereira

Tension (TW) and opposite wood (OW) of Eucalyptus globulus trees were analyzed for its chemical characteristics and Kraft pulp production. Lignin content was 16% lower and contained 32% more syringyl units in TW than in OW. The increase in syringyl units favoured the formation of β-O-4 bonds that was also higher in TW than in OW (84% vs. 64%, respectively). The effect of these wood features was evaluated in the production of Kraft pulps from both types of wood. At kappa number 16, Kraft pulps obtained from TW demanded less active alkali in delignification and presented slightly higher or similar pulp yield than pulps made with OW. Fiber length, coarseness and intrinsic viscosity were also higher in tension than in opposite pulps. When pulps where refined to 30°SR, TW pulps needed 18% more revolutions in the PFI mill to achieve the same beating degree than OW pulps. Strength properties (tensile, tear and burst indexes) were slightly higher or similar in tension as compared with opposite wood pulps. After an OD0(EO)D1 bleaching sequence, both pulps achieved up to 89% ISO brightness. Bleached pulps from TW presented higher viscosity and low amount of hexenuronic acids than pulps from OW. Results showed that TW presented high xylans and low lignin content that caused a decrease in alkali consumption, increase pulp strength properties and similar bleaching performance as compared with pulps from OW.


Holzforschung ◽  
1999 ◽  
Vol 53 (4) ◽  
pp. 416-422 ◽  
Author(s):  
Størker T. Moe ◽  
Arthur J. Ragauskas

Summary The chemistry of oxygen delignification of high-yield kraft pulp was studied by analysis of residual lignin extracted from kraft and kraft-oxygen pulps using the acid hydrolysis/dioxane extraction method. For reference pulps cooked to kappa numbers between 20 and 25, the content of free phenolic groups decreased to about 50% the original value upon oxygen delignification, while the content of carboxylic acid groups increased by 50–100%. For lignins isolated from high-yield kraft pulp and oxygen delignified high-yield kraft pulp, it was shown that high-yield kraft pulping with polysulfide (PS) and anthraquinone (AQ) gives a residual lignin which is chemically different from that of kraft pulps cooked to lower kappa numbers. Lignin extracted from oxygen delignified high-yield PS/AQ kraft pulp was more similar to lignins extracted from kraft pulps cooked to lower kappa numbers.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1990
Author(s):  
Jasna Malešič ◽  
Ida Kraševec ◽  
Irena Kralj Cigić

Determination of cellulose degree of polymerization (DP) is one of the most commonly used methods in paper degradation studies, performed either by a standardized method using viscometry (as average degree of polymerization (DPv)) or size-exclusion chromatography (SEC) (as weight average molecular mass (Mw)). Due to the insolubility of papers with high lignin content in cupriethylenediamine (CED), such as groundwood papers, viscometric determination is not possible; therefore, pretreatment is required to allow subsequent dissolution of the papers. In this study, the pretreatment of historical papers containing groundwood with sodium chlorite in acetic acid was investigated, which enables dissolution of the paper samples in CED and determination of the cellulose average degree of polymerization by viscometry (DPv). Kappa number was determined to estimate the lignin content in the papers. The suitability of SEC UV-VIS analysis for determination of Mw in papers with high lignin content had been verified before it was used as a comparative method for viscometry. Using SEC, changes in the weight average molecular mass (Mw) of cellulose tricarbanilate (CTC) derivative during delignification were evaluated. The results indicate that no significant depolymerization occurred in the selected samples under the studied delignification conditions, which was additionally confirmed with determination of monosaccharides by ion chromatography. The results of the Mw determinations by SEC and DPv by viscometry are in good correlation, justifying the use of viscometry after chlorite/acetic acid pretreatment to determine the cellulose average degree of polymerization in historical papers with high lignin content.


2001 ◽  
Vol 73 (12) ◽  
pp. 2059-2065
Author(s):  
Lucian A. Lucia ◽  
Rachel S. Smereck

A series of oxygen delignification experiments were performed on two softwood kraft pulps that had differing starting lignin contents. One had an initial kappa of 40 and the other 25, corresponding to lignin contents of 6% and 3.75% by dry mass, respectively. Several chemical process modifications were examined to determine their influence over the delignification selectivity and final pulp viscosity. A 2k factorial format was used to assess the significance of varying the temperature, time, and Mg/Mn ratio during the oxygen delignification of the pulps. It was found that the lower lignin content pulp displayed greater delignification selectivity than the higher lignin content pulp. Kappa numbers, viscosity values, and ICP metals contents were determined and are the basis of discussion for the results obtained.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (9) ◽  
pp. 447-460
Author(s):  
RAGHU DESHPANDE ◽  
LARS SUNDVALL ◽  
HANS GRUNDBERG ◽  
MARTIN LAWOKO ◽  
GUNNAR HENRIKSSON

Paper grade pulp production across the globe is dominated by the kraft process using different lignocellulosic raw materials. Delignification is achieved around 90% using different chemical treatments. A bottleneck for complete delignification is the presence of residual covalent bonds that prevail between lignin and carbohydrate even after severe chemical pulping and oxygen delignification steps. Different covalent bonds are present in native wood that sustain drastic pulping conditions. In this study, 100% birch wood was used for producing paper grade pulp, and the lignin carbohydrate bonds were analyzed at different stages of the kraft cook. The lignin carbohydrate bonds that were responsible for residual lignin retention in unbleached pulp were compared and analyzed with the original lignin-carbohydrate complex (LCC) bonds in native birch wood. It was shown that lignin remaining after pulping and oxygen delignification was mainly bound to xylan, whereas the lignin bound to glucomannan was for the most part degraded.


Holzforschung ◽  
2014 ◽  
Vol 68 (4) ◽  
pp. 377-384 ◽  
Author(s):  
Basile Gueneau ◽  
Nathalie Marlin ◽  
Alain Deronzier ◽  
Dominique Lachenal

Abstract Ten Cu(II)-polyimine complexes were tested as potential catalysts in oxygen delignification of softwood kraft pulps. The ligands were chosen from the terpyridine and the phenanthroline families, including several neocuproines. One diamine-phenanthrene (daphen) was also investigated. The main purpose was to examine whether the presence of methyl or phenyl substituents would direct the oxidation toward lignin. As a catalyst for comparison, unsubstituted 1,10-phenanthroline was selected, which is known to activate both delignification and carbohydrate degradation during oxygen bleaching of kraft pulp. The variation of ligands was aiming at the complex solubility and redox potential of the parameters. The experiments were performed on a mixture of mechanical pulp and fully bleached kraft pulps, a fully bleached pulp alone, and an industrial unbleached pulp. Concerning the oxygen activation in delignification of kraft pulp, 4,7-diphenyl-1,10-phenanthroline was as good as 1,10-phenanthroline, but appeared to be more selective, which resulted in a higher DPv of cellulose after treatment. This was interpreted by the structural similarities between the ligand and the kraft lignin and by a better stability of the intermediate complex with lignin. Two Cu(II)-phenanthroline derivatives complexes (4,7- and 5,6-dimethyl-1,10-phenanthroline) were also identified as effective oxygen activators for the removal of native lignin.


Holzforschung ◽  
2006 ◽  
Vol 60 (2) ◽  
pp. 123-129 ◽  
Author(s):  
Dongcheng Zhang ◽  
Yunqiao Pu ◽  
Xing-Sheng Chai ◽  
Ved Naithani ◽  
Hasan Jameel ◽  
...  

Abstract Two laboratory high-lignin-content softwood (SW) kraft pulps with kappa values of 48.0 and 49.5, prepared by cooking at high and low active alkali (AA), were used for the study of fiber charge development during two-stage oxygen delignification with inter-stage washing (OwO). It was established that the first oxygen delignification (O) stage increased total fiber charge by 2–4%, and further O-delignification via a second O-stage led to a 3–18% decrease in total fiber charge. Carboxylic acid content in pulp holocelluloses decreased by 12–26% with respect to a 35–70% kappa number reduction due to an O and OwO stage of delignification for high and low AA cooked SW kraft pulps. After an OwO-stage delignification, the residual lignin was found to exhibit a 50–100% increase in carboxylic acid content. 13C NMR spectral data for the residual lignin samples indicated that the unconjugated/conjugated acid ratio was approximately (3–4):1. Generally, the carboxylic acid content in low AA cooked softwood kraft pulp and the corresponding oxygen-delignified pulps was systematically higher (13–23%) than that in high AA cooked SW kraft pulp and the corresponding oxygen-delignified pulps. The experimental results also demonstrated that maximum acid-group content in total fiber occurred after 45–50% oxygen delignification of the SW kraft pulps studied.


Sign in / Sign up

Export Citation Format

Share Document