Dried fruits marketed in Russia: multi-mycotoxin contamination

2021 ◽  
Vol 90 (1) ◽  
pp. 33-39
Author(s):  
Z.A. Chalyy ◽  
◽  
M.G. Kiseleva ◽  
I.B. Sedova ◽  
L.P. Minaeva ◽  
...  
2003 ◽  
Vol 66 (8) ◽  
pp. 1514-1527 ◽  
Author(s):  
S. DRUSCH ◽  
W. RAGAB

This review gives an overview of the presence of mycotoxins in fruits. Although several mycotoxins occur in nature, very few (aflatoxins, ochratoxin A, patulin, Alternaria toxins) are regularly found in fruits. It has been shown that the presence of fungi on fruits is not necessarily associated with mycotoxin contamination. The formation of mycotoxins depends more on endogenous and environmental factors than fungal growth does. Mycotoxins may remain in fruits even when the fungal mycelium has been removed. Depending on the fruit and the mycotoxin, the diffusion of mycotoxins into the sound tissues of fruits may occur. The influence of the selection and storage of fruits and the influence of different processing steps involved in the production of fruit juices and dried fruits on possible mycotoxin contamination is described. It is shown that the careful selection, washing, and sorting of fruits is the most important factor in the reduction of mycotoxin contamination during the production of fruit juices. The processing of fruits does not result in the complete removal of mycotoxins.


2020 ◽  
Vol 10 (4) ◽  
pp. 488-494 ◽  
Author(s):  
Venugopal Singamaneni ◽  
Sudheer Kumar Dokuparthi ◽  
Nilanjana Banerjee ◽  
Ashish Kumar ◽  
Tulika Chakrabarti

Background: Emblica officinalis Gaertn. which belongs to the family Euphorbiaceae, Terminalia chebula Retz. and Terminalia bellerica Roxb. belong to the family Combretaceae. These are well known medicinal plants with phytochemical reservoir of great medicinal values and possess a vast ethnomedical history. Objective: The aim of the present study is to isolation of major compounds and to evaluate antimutagenic potential of the ethanol extracts of these plants. Methods: The dried fruits of E. officinalis, T. bellirica and T. chebula were powdered and extracted with 95% ethanol. The ethyl acetate portions were chromatographed over silica gel to isolate major compounds. Antimutagenic activity was determined by Ames test using TA98 and TA100 strains of Salmonella typhimurium. Results: Two major known compounds, gallic acid and ellagic acid were isolated from the dried fruits of Emblica officinalis, Terminalia chebula and T. bellirica. All the three extracts counteracted the mutagenicity induced by different genotoxic compounds in a dose dependent manner. Conclusion: This study showed that ethyl acetate portion of three extracts contain two major compounds, gallic acid and ellagic acid which might be responsible for potent antimutagenic activity of these extracts.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 202
Author(s):  
Jonas Vandicke ◽  
Katrien De Visschere ◽  
Maarten Ameye ◽  
Siska Croubels ◽  
Sarah De Saeger ◽  
...  

Maize silage, which in Europe is the main feed for dairy cattle in winter, can be contaminated by mycotoxins. Mycotoxigenic Fusarium spp. originating from field infections may survive in badly sealed silages or re-infect at the cutting edge during feed-out. In this way, mycotoxins produced in the field may persist during the silage process. In addition, typical silage fungi such as Penicillium spp. and Aspergillus spp. survive in silage conditions and produce mycotoxins. In this research, 56 maize silages in Flanders were sampled over the course of three years (2016–2018). The concentration of 22 different mycotoxins was investigated using a multi-mycotoxin liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and the presence of DNA of three Fusarium spp. (F. graminearum, F. culmorum and F. verticillioides) was analyzed in a selection of these samples using quantitative polymerase chain reaction (qPCR). Every maize silage contained at least two different mycotoxins. Nivalenol (NIV) and deoxynivalenol (DON) were the most prevalent (both in 97.7% of maize silages), followed by ENN B (88.7%). Concentrations often exceeded the EU recommendations for DON and zearalenone (ZEN), especially in 2017 (21.3% and 27.7% of the maize silages, respectively). No correlations were found between fungal DNA and mycotoxin concentrations. Furthermore, by ensiling maize with a known mycotoxin load in a net bag, the mycotoxin contamination could be monitored from seed to feed. Analysis of these net bag samples revealed that the average concentration of all detected mycotoxins decreased after fermentation. We hypothesize that mycotoxins are eluted, degraded, or adsorbed during fermentation, but certain badly preserved silages are prone to additional mycotoxin production during the stable phase due to oxygen ingression, leading to extremely high toxin levels.


Author(s):  
Francis Imade ◽  
Edgar Mugizi Ankwasa ◽  
Hairong Geng ◽  
Sana Ullah ◽  
Tanvir Ahmad ◽  
...  

2021 ◽  
Author(s):  
Giuliano Cerasa ◽  
Gabriella Lo Verde

AbstractOzognathus cornutus (LeConte, 1859) (Coleoptera: Ptinidae: Ernobiinae), species native to North America, is a saproxylophagous species and is known to feed on decaying tissues within conspicuous galls and on vegetal decaying organic material such as dried fruits or small wood shavings and insect excrements in galleries made by other woodboring species. A few years after the first record in 2011, its naturalization in Italy is here reported. The insect was found as successor in galls of Psectrosema tamaricis (Diptera Cecidomyiidae), Plagiotrochus gallaeramulorum, Andricus multiplicatus and Synophrus politus (Hymenoptera Cynipidae). The galls seem to have played an important ecological role in speeding up the naturalization process. The lowest proportion of galls used by O. cornutus was recorded for P. tamaricis (23%), the only host belonging to Cecidomyiidae, while the percentages recorded for the other host species, all Cynipidae forming galls on oaks, were higher: 43.6%, 61.1% and 76.9% in A multiplicatus, S. politus and P. gallaeramulorum, respectively. Although O. cornutus is able to exploit other substrates like dried fruits and vegetables, for which it could represent a potential pest, it prefers to live as a successor in woody and conspicuous galls, which thus can represent a sort of natural barrier limiting the possible damages to other substrates.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 803
Author(s):  
Trid Sriwichai ◽  
Jiratchaya Wisetkomolmat ◽  
Tonapha Pusadee ◽  
Korawan Sringarm ◽  
Kiattisak Duangmal ◽  
...  

The aim of this research is to evaluate the relationship between genotype, phenotype, and chemical profiles of essential oil obtained from available Zanthoxylum spp. Three specimens of makhwaen (MK) distributed in Northern Thailand were genetically and morphologically compared with other Zanthoxylum spices, known locally as huajiao (HJ) and makwoung (MKO), respectively. HJ was taxonomically confirmed as Z. armatum while MKO and MK were identified as Z. rhetsa and Z. myriacanthum. Genetic sequencing distributed these species into three groups accordingly to their confirmed species. Essential oil of the dried fruits from these samples was extracted and analyzed for their chemical and physical properties. Cluster analysis of their volatile compositions separated MKO and MK apart from HJ with L-limonene, terpinen-4-ol, β-phellandrene, and β-philandrene. By using odor attributes, the essential oil of MKO and MK were closely related possessing fruity, woody, and citrus aromas, while the HJ was distinctive. Overall, the phenotypic characteristic can be used to elucidate the species among makhwaen fruits of different sources. The volatile profiling was nonetheless dependent on the genotypes but makwoung and makhwaen showed similar profiles.


Food Control ◽  
2020 ◽  
Vol 118 ◽  
pp. 107363 ◽  
Author(s):  
Meriem Aoun ◽  
William Stafstrom ◽  
Paige Priest ◽  
John Fuchs ◽  
Gary L. Windham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document