scholarly journals Cutting wedge: bacterial community diversity and structure associated with the cheese rind and curd of seven natural rind cheeses

Fine Focus ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. 09-31
Author(s):  
Lei Wei ◽  
Rebecca J. Rubenstein ◽  
Kathleen M. Hanlon ◽  
Heidi Wade ◽  
Celeste N. Peterson ◽  
...  

The microorganisms that inhabit cheese contribute greatly to the flavor and development of the final product. While the rind and curd microbiota have been characterized separately, there is limited information on how the structure and function of microbial communities in rinds and curds vary within and amongst cheeses. To better understand the differences in community structure and function between communities of cheese rinds and curds, we combined culture-based methods with culture-independent community profiling of curds and rinds. Rinds contained greater taxonomic diversity than curds. Lactobacillales dominated curd communities while members from the order Actinomycetales were found in high abundance in rind communities. Communities varied more between rinds and curds than among cheeses produced from different milk types. To better understand microbial community functions, we cultured and assayed isolates for antibiotic susceptibility and carbon source utilization. Among European and U.S. cheeses, 70% of all susceptible isolates were cultured from U.S. cheeses. Overall, our study explored the differences within and between rind and curd microbial communities of natural rind cheeses, provided insights into the environmental factors that shape microbial communities, and demonstrated that at the community and isolate level the cheese microbiome was diverse and metabolically complex.

2021 ◽  
Author(s):  
Jennifer D Rocca ◽  
Andrea Yammine ◽  
Marie Simonin ◽  
Jean Gibert

Temperature strongly influences microbial community structure and function, which in turn contributes to the global carbon cycle that can fuel further warming. Recent studies suggest that biotic interactions amongst microbes may play an important role in determining the temperature responses of these communities. However, how microbial predation regulates these communities under future climates is still poorly understood. Here we assess whether predation by one of the most important bacterial consumers globally, protists, influences the temperature response of a freshwater microbial community structure and function. To do so, we exposed these microbial communities to two cosmopolitan species of protists at two different temperatures, in a month-long microcosm experiment. While microbial biomass and respiration increased with temperature due to shifts in microbial community structure, these responses changed over time and in the presence of protist predators. Protists influenced microbial biomass and function through effects on community structure, and predation actually reduced microbial respiration rate at elevated temperature. Indicator species and threshold indicator taxa analyses showed that these predation effects were mostly determined by phylum-specific bacterial responses to protist density and cell size. Our study supports previous findings that temperature is an important driver of microbial communities, but also demonstrates that predation can mediate these responses to warming, with important consequences for the global carbon cycle and future warming.


2021 ◽  
Vol 12 ◽  
Author(s):  
Denise M. Akob ◽  
Adam C. Mumford ◽  
Andrea Fraser ◽  
Cassandra R. Harris ◽  
William H. Orem ◽  
...  

The widespread application of directional drilling and hydraulic fracturing technologies expanded oil and gas (OG) development to previously inaccessible resources. A single OG well can generate millions of liters of wastewater, which is a mixture of brine produced from the fractured formations and injected hydraulic fracturing fluids (HFFs). With thousands of wells completed each year, safe management of OG wastewaters has become a major challenge to the industry and regulators. OG wastewaters are commonly disposed of by underground injection, and previous research showed that surface activities at an Underground Injection Control (UIC) facility in West Virginia affected stream biogeochemistry and sediment microbial communities immediately downstream from the facility. Because microbially driven processes can control the fate and transport of organic and inorganic components of OG wastewater, we designed a series of aerobic microcosm experiments to assess the influence of high total dissolved solids (TDS) and two common HFF additives—the biocide 2,2-dibromo-3-nitrilopropionamide (DBNPA) and ethylene glycol (an anti-scaling additive)—on microbial community structure and function. Microcosms were constructed with sediment collected upstream (background) or downstream (impacted) from the UIC facility in West Virginia. Exposure to elevated TDS resulted in a significant decrease in aerobic respiration, and microbial community analysis following incubation indicated that elevated TDS could be linked to the majority of change in community structure. Over the course of the incubation, the sediment layer in the microcosms became anoxic, and addition of DBNPA was observed to inhibit iron reduction. In general, disruptions to microbial community structure and function were more pronounced in upstream and background sediment microcosms than in impacted sediment microcosms. These results suggest that the microbial community in impacted sediments had adapted following exposure to OG wastewater releases from the site. Our findings demonstrate the potential for releases from an OG wastewater disposal facility to alter microbial communities and biogeochemical processes. We anticipate that these studies will aid in the development of useful models for the potential impact of UIC disposal facilities on adjoining surface water and shallow groundwater.


2010 ◽  
Vol 74 (3) ◽  
pp. 453-476 ◽  
Author(s):  
Courtney J. Robinson ◽  
Brendan J. M. Bohannan ◽  
Vincent B. Young

SUMMARY In the past several years, we have witnessed an increased interest in understanding the structure and function of the indigenous microbiota that inhabits the human body. It is hoped that this will yield novel insight into the role of these complex microbial communities in human health and disease. What is less appreciated is that this recent activity owes a great deal to the pioneering efforts of microbial ecologists who have been studying communities in non-host-associated environments. Interactions between environmental microbiologists and human microbiota researchers have already contributed to advances in our understanding of the human microbiome. We review the work that has led to these recent advances and illustrate some of the possible future directions for continued collaboration between these groups of researchers. We discuss how the application of ecological theory to the human-associated microbiota can lead us past descriptions of community structure and toward an understanding of the functions of the human microbiota. Such an approach may lead to a shift in the prevention and treatment of human diseases that involves conservation or restoration of the normal community structure and function of the host-associated microbiota.


2017 ◽  
Author(s):  
Pawel Sierocinski ◽  
Kim Milferstedt ◽  
Florian Bayer ◽  
Tobias Großkopf ◽  
Mark Alston ◽  
...  

ABSTRACTMicrobial communities commonly coalesce in nature, but the consequences for resultant community structure and function is unclear. Consistent with recent theory, we demonstrate using methanogenic communities that the most productive communities in isolation dominated when communities were mixed. As a corollary of this dynamic, total methane production increased with the number of inoculated communities. The cohesion and dominance of single communities was explained by more “niche-packed” communities being both more efficient at exploiting resources and resistant to invasion, rather than a function of the average performance of component species. These results are likely to be relevant to the ecological dynamics of natural microbial communities, as well as demonstrating a simple method to predictably enhance microbial community function in biotechnology, health and agriculture.


community structure and function, there is a clear trend to combine molecular measures of species composition and the abundance of important microbial groups with measurement of particular processes and environmental parameters. Such studies have the potential to relate community structure to function and activity in complex microbial communities. For example, community structure and function have been analysed through a combination of whole cell in situ hybridization and microsensors. rRNA-based localizations of ammonia- and nitrite-oxidizing bacteria were performed on a nitrifying biofilm following microelectrode measurements for Oj, N20 and N02/N 03' (Schramm et al. 1996, Santegoeds 1998). A good correlation of community structure and function could be demonstrated on a microscopic scale. The distribution of sulfate-reducing and methanogenic bacteria was also determined in a similar manner, with respect to activity (Raskin et al. 1994). Although environmental biotechnology and bioremediation in general could largely benefit from these multidisciplinary analyses of the structure and function of complex microbial communities, the role of classical microbial ecology should not be underestimated. Molecular studies complemented by appropriate culture-based investigations will assist in identifying organisms that are truly representative of those important in nature. It is only by selecting a range of appropriate tools in a complementary fashion that some of the mysteries of microbial ecology can be unlocked and the wealth of novel biodiversity presented by natural microbial communities can be harvested. A.,


Sign in / Sign up

Export Citation Format

Share Document