scholarly journals Deteksi Ras Kucing Menggunakan Compound Model Scaling Convolutional Neural Network

2021 ◽  
Vol 6 (2) ◽  
pp. 236-251
Author(s):  
Nadia Azahro Choirunisa ◽  
Tita Karlita ◽  
Rengga Asmara

Kucing merupakan hewan yang sangat popular di dunia. Jumlah dari ras kucing di dunia hanya sekitar 1% saja, sehingga didominasi oleh ras campuran maupun kucing domestik. Namun demikian, ada begitu banyak jenis ras kucing di dunia, sehingga terkadang sulit untuk mengidentifikasinya. Oleh karena itu, dibutuhkan sistem yang dapat mengenali jenis-jenis ras kucing. Dalam penelitian ini, penulis menggunakan salah satu metode deep learning yang dapat mengenali dan mengklasifikasikan suatu objek, yaitu Neural Convolutional Network (CNN). Penulis menggunakan 9 jenis ras kucing yang berbeda berisi 2700 gambar. Dalam pengujiannya, penulis menggunakan arsitektur EfficientNet-B0. Model paling optimal dari pengujian yang dilakukan terhadap 180 gambar kucing memperoleh tingkat akurasi sebesar 95%.   Kata Kunci : Deep Learning, Convolutional Neural Network (CNN) , Ras kucing, EfficientNet-B0.

2021 ◽  
Vol 2137 (1) ◽  
pp. 012056
Author(s):  
Hongli Ma ◽  
Fang Xie ◽  
Tao Chen ◽  
Lei Liang ◽  
Jie Lu

Abstract Convolutional neural network is a very important research direction in deep learning technology. According to the current development of convolutional network, in this paper, convolutional neural networks are induced. Firstly, this paper induces the development process of convolutional neural network; then it introduces the structure of convolutional neural network and some typical convolutional neural networks. Finally, several examples of the application of deep learning is introduced.


2018 ◽  
Vol 11 (2) ◽  
pp. 59 ◽  
Author(s):  
Yohanes Gultom ◽  
Aniati Murni Arymurthy ◽  
Rian Josua Masikome

Batik fabric is one of the most profound cultural heritage in Indonesia. Hence, continuous research on understanding it is necessary to preserve it. Despite of being one of the most common research task, Batik’s pattern automatic classification still requires some improvement especially in regards to invariance dilemma. Convolutional neural network (ConvNet) is one of deep learning architecture which able to learn data representation by combining local receptive inputs, weight sharing and convolutions in order to solve invariance dilemma in image classification. Using dataset of 2,092 Batik patches (5 classes), the experiments show that the proposed model, which used deep ConvNet VGG16 as feature extractor (transfer learning), achieves slightly better average of 89 ± 7% accuracy than SIFT and SURF-based that achieve 88 ± 10% and 88 ± 8% respectively. Despite of that, SIFT reaches around 5% better accuracy in rotated and scaled dataset.


2020 ◽  
Vol 222 (1) ◽  
pp. 247-259 ◽  
Author(s):  
Davood Moghadas

SUMMARY Conventional geophysical inversion techniques suffer from several limitations including computational cost, nonlinearity, non-uniqueness and dimensionality of the inverse problem. Successful inversion of geophysical data has been a major challenge for decades. Here, a novel approach based on deep learning (DL) inversion via convolutional neural network (CNN) is proposed to instantaneously estimate subsurface electrical conductivity (σ) layering from electromagnetic induction (EMI) data. In this respect, a fully convolutional network was trained on a large synthetic data set generated based on 1-D EMI forward model. The accuracy of the proposed approach was examined using several synthetic scenarios. Moreover, the trained network was used to find subsurface electromagnetic conductivity images (EMCIs) from EMI data measured along two transects from Chicken Creek catchment (Brandenburg, Germany). Dipole–dipole electrical resistivity tomography data were measured as well to obtain reference subsurface σ distributions down to a 6 m depth. The inversely estimated models were juxtaposed and compared with their counterparts obtained from a spatially constrained deterministic algorithm as a standard code. Theoretical simulations demonstrated a well performance of the algorithm even in the presence of noise in data. Moreover, application of the DL inversion for subsurface imaging from Chicken Creek catchment manifested the accuracy and robustness of the proposed approach for EMI inversion. This approach returns subsurface σ distribution directly from EMI data in a single step without any iterations. The proposed strategy simplifies considerably EMI inversion and allows for rapid and accurate estimation of subsurface EMCI from multiconfiguration EMI data.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sorayya Rezayi ◽  
Niloofar Mohammadzadeh ◽  
Hamid Bouraghi ◽  
Soheila Saeedi ◽  
Ali Mohammadpour

Background. Leukemia is fatal cancer in both children and adults and is divided into acute and chronic. Acute lymphoblastic leukemia (ALL) is a subtype of this cancer. Early diagnosis of this disease can have a significant impact on the treatment of this disease. Computational intelligence-oriented techniques can be used to help physicians identify and classify ALL rapidly. Materials and Method. In this study, the utilized dataset was collected from a CodaLab competition to classify leukemic cells from normal cells in microscopic images. Two famous deep learning networks, including residual neural network (ResNet-50) and VGG-16 were employed. These two networks are already trained by our assigned parameters, meaning we did not use the stored weights; we adjusted the weights and learning parameters too. Also, a convolutional network with ten convolutional layers and 2 ∗ 2 max-pooling layers—with strides 2—was proposed, and six common machine learning techniques were developed to classify acute lymphoblastic leukemia into two classes. Results. The validation accuracies (the mean accuracy of training and test networks for 100 training cycles) of the ResNet-50, VGG-16, and the proposed convolutional network were found to be 81.63%, 84.62%, and 82.10%, respectively. Among applied machine learning methods, the lowest obtained accuracy was related to multilayer perceptron (27.33%) and highest for random forest (81.72%). Conclusion. This study showed that the proposed convolutional neural network has optimal accuracy in the diagnosis of ALL. By comparing various convolutional neural networks and machine learning methods in diagnosing this disease, the convolutional neural network achieved good performance and optimal execution time without latency. This proposed network is less complex than the two pretrained networks and can be employed by pathologists and physicians in clinical systems for leukemia diagnosis.


2020 ◽  
Vol 39 (3) ◽  
pp. 169-185
Author(s):  
Omran Salih ◽  
Serestina Viriri

Deep learning techniques such as Deep Convolutional Networks have achieved great success in skin lesion segmentation towards melanoma detection. The performance is however restrained by distinctive and challenging features of skin lesions such as irregular and fuzzy border, noise and artefacts presence and low contrast between lesions. The methods are also restricted with scarcity of annotated lesion images training dataset and limited computing resources. Recent research in convolutional neural network (CNN) has provided a variety of new architectures for deep learning. One interesting new architecture is the local binary convolutional neural network (LBCNN), which can reduce the workload of CNNs and improve the classification accuracy. The proposed framework employs the local binary convolution on U-net architecture instead of the standard convolution in order to reduced-size deep convolutional encoder-decoder network that adopts loss function for robust segmentation. The proposed framework replaced the encoder part in U-net by LBCNN layers. The approach automatically learns and segments complex features of skin lesion images. The encoder stage learns the contextual information by extracting discriminative features while the decoder stage captures the lesion boundaries of the skin images. This addresses the issues with encoder-decoder network producing coarse segmented output with challenging skin lesions appearances such as low contrast between healthy and unhealthy tissues and fine grained variability. It also addresses issues with multi-size, multi-scale and multi-resolution skin lesion images. The deep convolutional network also adopts a reduced-size network with just five levels of encoding-decoding network. This reduces greatly the consumption of computational processing resources. The system was evaluated on publicly available dataset of ISIC and PH2. The proposed system outperforms most of the existing state-of-art.


2020 ◽  
Vol 22 (3) ◽  
pp. 541-561 ◽  
Author(s):  
Song Pham Van ◽  
Hoang Minh Le ◽  
Dat Vi Thanh ◽  
Thanh Duc Dang ◽  
Ho Huu Loc ◽  
...  

Abstract Rainfall–runoff modelling is complicated due to numerous complex interactions and feedback in the water cycle among precipitation and evapotranspiration processes, and also geophysical characteristics. Consequently, the lack of geophysical characteristics such as soil properties leads to difficulties in developing physical and analytical models when traditional statistical methods cannot simulate rainfall–runoff accurately. Machine learning techniques with data-driven methods, which can capture the nonlinear relationship between prediction and predictors, have been rapidly developed in the last decades and have many applications in the field of water resources. This study attempts to develop a novel 1D convolutional neural network (CNN), a deep learning technique, with a ReLU activation function for rainfall–runoff modelling. The modelling paradigm includes applying two convolutional filters in parallel to separate time series, which allows for the fast processing of data and the exploitation of the correlation structure between the multivariate time series. The developed modelling framework is evaluated with measured data at Chau Doc and Can Tho hydro-meteorological stations in the Vietnamese Mekong Delta. The proposed model results are compared with simulations of long short-term memory (LSTM) and traditional models. Both CNN and LSTM have better performance than the traditional models, and the statistical performance of the CNN model is slightly better than the LSTM results. We demonstrate that the convolutional network is suitable for regression-type problems and can effectively learn dependencies in and between the series without the need for a long historical time series, is a time-efficient and easy to implement alternative to recurrent-type networks and tends to outperform linear and recurrent models.


2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


Sign in / Sign up

Export Citation Format

Share Document