One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network

2020 ◽  
Vol 222 (1) ◽  
pp. 247-259 ◽  
Author(s):  
Davood Moghadas

SUMMARY Conventional geophysical inversion techniques suffer from several limitations including computational cost, nonlinearity, non-uniqueness and dimensionality of the inverse problem. Successful inversion of geophysical data has been a major challenge for decades. Here, a novel approach based on deep learning (DL) inversion via convolutional neural network (CNN) is proposed to instantaneously estimate subsurface electrical conductivity (σ) layering from electromagnetic induction (EMI) data. In this respect, a fully convolutional network was trained on a large synthetic data set generated based on 1-D EMI forward model. The accuracy of the proposed approach was examined using several synthetic scenarios. Moreover, the trained network was used to find subsurface electromagnetic conductivity images (EMCIs) from EMI data measured along two transects from Chicken Creek catchment (Brandenburg, Germany). Dipole–dipole electrical resistivity tomography data were measured as well to obtain reference subsurface σ distributions down to a 6 m depth. The inversely estimated models were juxtaposed and compared with their counterparts obtained from a spatially constrained deterministic algorithm as a standard code. Theoretical simulations demonstrated a well performance of the algorithm even in the presence of noise in data. Moreover, application of the DL inversion for subsurface imaging from Chicken Creek catchment manifested the accuracy and robustness of the proposed approach for EMI inversion. This approach returns subsurface σ distribution directly from EMI data in a single step without any iterations. The proposed strategy simplifies considerably EMI inversion and allows for rapid and accurate estimation of subsurface EMCI from multiconfiguration EMI data.

2020 ◽  
Author(s):  
Davood Moghadas ◽  
Annika Badorreck

<p>Exploring hydrological and ecological processes plays a key role in understanding ecosystem developments. In this respect, the constructed catchment, Chicken Creek (Brandenburg, Germany), has been established for fundamental and interdisciplinary scientific research. The main components of the site include a base soil which is followed by a Tertiary clay layer (aquiclude) and sand layer (aquifer) on the top of the domain. In general, the soil mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff, groundwater recharge, contaminant transport, plant growth, evaporation and energy exchanges between the Earth’s surface and its atmosphere. In this respect, characterization of the soil electrical conductivity (EC) is important, since it is highly correlated with different chemical and physical soil properties.</p><p>Low frequency loop-loop electromagnetic induction (EMI) techniques have found widespread application for non-invasive delineation of the subsurface EC structures at different spatial scales. However, successful inversion of EMI data has been a major challenge for decades, due to the non-linearity, non-uniqueness and dimensionality of the inverse problem. Here, a novel approach based on deep learning inversion via convolutional neural networks is proposed to instantaneously estimate subsurface EC layering from EMI data. In this respect, a fully convolutional network was trained on a large synthetic data set generated based on one-dimensional EMI forward model. The trained network was used to find subsurface electromagnetic conductivity images from EMI data measured along two transect from Chicken Creek catchment. Dipole-dipole electrical resistivity tomography data were measured as well to obtain reference subsurface EC distributions down to a 6 m depth. The inversely estimated models were juxtaposed and compared with their counterparts obtained from a spatially constrained deterministic algorithm as a standard code. Application of the deep learning inversion for subsurface imaging from Chicken Creek catchment manifested the accuracy and robustness of the proposed approach for EMI inversion. This approach returns subsurface EC distribution directly from EMI data in a single step without any iterations. The proposed strategy simplifies considerably EMI inversion and allows for rapid and accurate estimation of subsurface electromagnetic conductivity images from multi-configuration EMI data.</p>


2020 ◽  
Vol 12 (6) ◽  
pp. 1015 ◽  
Author(s):  
Kan Zeng ◽  
Yixiao Wang

Classification algorithms for automatically detecting sea surface oil spills from spaceborne Synthetic Aperture Radars (SARs) can usually be regarded as part of a three-step processing framework, which briefly includes image segmentation, feature extraction, and target classification. A Deep Convolutional Neural Network (DCNN), named the Oil Spill Convolutional Network (OSCNet), is proposed in this paper for SAR oil spill detection, which can do the latter two steps of the three-step processing framework. Based on VGG-16, the OSCNet is obtained by designing the architecture and adjusting hyperparameters with the data set of SAR dark patches. With the help of the big data set containing more than 20,000 SAR dark patches and data augmentation, the OSCNet can have as many as 12 weight layers. It is a relatively deep Deep Learning (DL) network for SAR oil spill detection. It is shown by the experiments based on the same data set that the classification performance of OSCNet has been significantly improved compared to that of traditional machine learning (ML). The accuracy, recall, and precision are improved from 92.50%, 81.40%, and 80.95% to 94.01%, 83.51%, and 85.70%, respectively. An important reason for this improvement is that the distinguishability of the features learned by OSCNet itself from the data set is significantly higher than that of the hand-crafted features needed by traditional ML algorithms. In addition, experiments show that data augmentation plays an important role in avoiding over-fitting and hence improves the classification performance. OSCNet has also been compared with other DL classifiers for SAR oil spill detection. Due to the huge differences in the data sets, only their similarities and differences are discussed at the principle level.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Guangpeng Fan ◽  
Feixiang Chen ◽  
Danyu Chen ◽  
Yan Li ◽  
Yanqi Dong

In the geological survey, the recognition and classification of rock lithology are an important content. The recognition method based on rock thin section leads to long recognition period and high recognition cost, and the recognition accuracy cannot be guaranteed. Moreover, the above method cannot provide an effective solution in the field. As a communication device with multiple sensors, smartphones are carried by most geological survey workers. In this paper, a smartphone application based on the convolutional neural network is developed. In this application, the phone’s camera can be used to take photos of rocks. And the types and lithology of rocks can be quickly and accurately identified in a very short time. This paper proposed a method for quickly and accurately recognizing rock lithology in the field. Based on ShuffleNet, a lightweight convolutional neural network used in deep learning, combined with the transfer learning method, the recognition model of the rock image was established. The trained model was then deployed to the smartphone. A smartphone application for identifying rock lithology was designed and developed to verify its usability and accuracy. The research results showed that the accuracy of the recognition model in this paper was 97.65% on the verification data set of the PC. The accuracy of recognition on the test data set of the smartphone was 95.30%, among which the average recognition time of the single sheet was 786 milliseconds, the maximum value was 1,045 milliseconds, and the minimum value was 452 milliseconds. And the single-image accuracy above 96% accounted for 95% of the test data set. This paper presented a new solution for the rapid and accurate recognition of rock lithology in field geological surveys, which met the needs of geological survey personnel to quickly and accurately identify rock lithology in field operations.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xingyu Xie ◽  
Bin Lv

Convolutional Neural Network- (CNN-) based GAN models mainly suffer from problems such as data set limitation and rendering efficiency in the segmentation and rendering of painting art. In order to solve these problems, this paper uses the improved cycle generative adversarial network (CycleGAN) to render the current image style. This method replaces the deep residual network (ResNet) of the original network generator with a dense connected convolutional network (DenseNet) and uses the perceptual loss function for adversarial training. The painting art style rendering system built in this paper is based on perceptual adversarial network (PAN) for the improved CycleGAN that suppresses the limitation of the network model on paired samples. The proposed method also improves the quality of the image generated by the artistic style of painting and further improves the stability and speeds up the network convergence speed. Experiments were conducted on the painting art style rendering system based on the proposed model. Experimental results have shown that the image style rendering method based on the perceptual adversarial error to improve the CycleGAN + PAN model can achieve better results. The PSNR value of the generated image is increased by 6.27% on average, and the SSIM values are all increased by about 10%. Therefore, the improved CycleGAN + PAN image painting art style rendering method produces better painting art style images, which has strong application value.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zechen Wang ◽  
Liangzhen Zheng ◽  
Yang Liu ◽  
Yuanyuan Qu ◽  
Yong-Qiang Li ◽  
...  

One key task in virtual screening is to accurately predict the binding affinity (△G) of protein-ligand complexes. Recently, deep learning (DL) has significantly increased the predicting accuracy of scoring functions due to the extraordinary ability of DL to extract useful features from raw data. Nevertheless, more efforts still need to be paid in many aspects, for the aim of increasing prediction accuracy and decreasing computational cost. In this study, we proposed a simple scoring function (called OnionNet-2) based on convolutional neural network to predict △G. The protein-ligand interactions are characterized by the number of contacts between protein residues and ligand atoms in multiple distance shells. Compared to published models, the efficacy of OnionNet-2 is demonstrated to be the best for two widely used datasets CASF-2016 and CASF-2013 benchmarks. The OnionNet-2 model was further verified by non-experimental decoy structures from docking program and the CSAR NRC-HiQ data set (a high-quality data set provided by CSAR), which showed great success. Thus, our study provides a simple but efficient scoring function for predicting protein-ligand binding free energy.


2019 ◽  
Author(s):  
Dan MacLean

AbstractGene Regulatory networks that control gene expression are widely studied yet the interactions that make them up are difficult to predict from high throughput data. Deep Learning methods such as convolutional neural networks can perform surprisingly good classifications on a variety of data types and the matrix-like gene expression profiles would seem to be ideal input data for deep learning approaches. In this short study I compiled training sets of expression data using the Arabidopsis AtGenExpress global stress expression data set and known transcription factor-target interactions from the Arabidopsis PLACE database. I built and optimised convolutional neural networks with a best model providing 95 % accuracy of classification on a held-out validation set. Investigation of the activations within this model revealed that classification was based on positive correlation of expression profiles in short sections. This result shows that a convolutional neural network can be used to make classifications and reveal the basis of those calssifications for gene expression data sets, indicating that a convolutional neural network is a useful and interpretable tool for exploratory classification of biological data. The final model is available for download and as a web application.


2021 ◽  
Vol 6 (2) ◽  
pp. 236-251
Author(s):  
Nadia Azahro Choirunisa ◽  
Tita Karlita ◽  
Rengga Asmara

Kucing merupakan hewan yang sangat popular di dunia. Jumlah dari ras kucing di dunia hanya sekitar 1% saja, sehingga didominasi oleh ras campuran maupun kucing domestik. Namun demikian, ada begitu banyak jenis ras kucing di dunia, sehingga terkadang sulit untuk mengidentifikasinya. Oleh karena itu, dibutuhkan sistem yang dapat mengenali jenis-jenis ras kucing. Dalam penelitian ini, penulis menggunakan salah satu metode deep learning yang dapat mengenali dan mengklasifikasikan suatu objek, yaitu Neural Convolutional Network (CNN). Penulis menggunakan 9 jenis ras kucing yang berbeda berisi 2700 gambar. Dalam pengujiannya, penulis menggunakan arsitektur EfficientNet-B0. Model paling optimal dari pengujian yang dilakukan terhadap 180 gambar kucing memperoleh tingkat akurasi sebesar 95%.   Kata Kunci : Deep Learning, Convolutional Neural Network (CNN) , Ras kucing, EfficientNet-B0.


2021 ◽  
Vol 87 (8) ◽  
pp. 577-591
Author(s):  
Fengpeng Li ◽  
Jiabao Li ◽  
Wei Han ◽  
Ruyi Feng ◽  
Lizhe Wang

Inspired by the outstanding achievement of deep learning, supervised deep learning representation methods for high-spatial-resolution remote sensing image scene classification obtained state-of-the-art performance. However, supervised deep learning representation methods need a considerable amount of labeled data to capture class-specific features, limiting the application of deep learning-based methods while there are a few labeled training samples. An unsupervised deep learning representation, high-resolution remote sensing image scene classification method is proposed in this work to address this issue. The proposed method, called contrastive learning, narrows the distance between positive views: color channels belonging to the same images widens the gaps between negative view pairs consisting of color channels from different images to obtain class-specific data representations of the input data without any supervised information. The classifier uses extracted features by the convolutional neural network (CNN)-based feature extractor with labeled information of training data to set space of each category and then, using linear regression, makes predictions in the testing procedure. Comparing with existing unsupervised deep learning representation high-resolution remote sensing image scene classification methods, contrastive learning CNN achieves state-of-the-art performance on three different scale benchmark data sets: small scale RSSCN7 data set, midscale aerial image data set, and large-scale NWPU-RESISC45 data set.


2021 ◽  
Author(s):  
Julio Aguilar ◽  
Laura Sandoval ◽  
Arturo Rodriguez ◽  
Sanjay Shantha Kumar ◽  
Jose Terrazas ◽  
...  

Abstract In seeking predictability of characterizing materials for ultra-high temperature materials for hypersonic vehicles, the use of the convolutional neural network for characterizing the behavior of liquid Al-Sm-X (Hf, Zr, Ti) alloys within a B4C packed to determine the reaction products for which they are usually done with the scanning electron microscope (SEM) or X-ray diffraction (XRD) at ultra-high temperatures (> 1600°C). Our goal is to predict ultimately the products as liquid Al-Sm-X (Hf, Zr, Ti) alloys infiltrate into a B4C packed bed. Material characterization determines the processing path and final species from the reacting infusion consisting of fluid flow through porous channels, consumption of elemental components, and reaction forming boride and carbide precipitates. Since characterization is time-consuming, an expert in this field is required; our approach is to characterize and track these species using a Convolutional Neural Network (CNN) to facilitate and automate analysis of images. Although Deep Learning seems to provide an automated prediction approach, some of these challenges faced under this research are difficult to overcome. These challenges include data required, accuracy, training time, and computational cost requirements for a CNN. Our approach was to perform experiments on high-temperature metal infusion under B4C Packed Bed infiltration in a parametric matrix of cases. We characterized images using SEM and XRD images and run/optimize our CNN, which yields an innovative method for characterization via Deep Learning compared to traditional practices.


2021 ◽  
Vol 22 (8) ◽  
pp. 4023
Author(s):  
Huimin Shen ◽  
Youzhi Zhang ◽  
Chunhou Zheng ◽  
Bing Wang ◽  
Peng Chen

Accurate prediction of binding affinity between protein and ligand is a very important step in the field of drug discovery. Although there are many methods based on different assumptions and rules do exist, prediction performance of protein–ligand binding affinity is not satisfactory so far. This paper proposes a new cascade graph-based convolutional neural network architecture by dealing with non-Euclidean irregular data. We represent the molecule as a graph, and use a simple linear transformation to deal with the sparsity problem of the one-hot encoding of original data. The first stage adopts ARMA graph convolutional neural network to learn the characteristics of atomic space in the protein–ligand complex. In the second stage, one variant of the MPNN graph convolutional neural network is introduced with chemical bond information and interactive atomic features. Finally, the architecture passes through the global add pool and the fully connected layer, and outputs a constant value as the predicted binding affinity. Experiments on the PDBbind v2016 data set showed that our method is better than most of the current methods. Our method is also comparable to the state-of-the-art method on the data set, and is more intuitive and simple.


Sign in / Sign up

Export Citation Format

Share Document