scholarly journals Analisis Konsentrasi SO2, NO2 dan Partikulat pada Sumber Emisi Tidak Bergerak (Cerobong) Berbahan Bakar Batubara dan Cangkang (Studi Kasus di Kabupaten Muaro Jambi)

2019 ◽  
Vol 2 (1) ◽  
pp. 21
Author(s):  
Sugiarto Sugiarto ◽  
Peppy Herawati ◽  
Anggrika Riyanti

The palm oil processing industry in which produces Crude Palm Oil (CPO) generally uses boilers. The combustion process with a boiler will produce pollutants in the form of particulates (dust), and gases such as NO2 and SO2. There are two palm oil processing industries in Muaro Jambi District that use different fuels: coal and oil palm shell. The purpose of this study was to determine the ratio of SO2, NO2 and particulate concentration in industries that use coal and oil palm shell.  Primary data taken in the form of concentrations of SO2, NO2 and particulates also meteorological data. Secondary data taken in the form of map area, height and diameter of the boiler, and production capacity. Sampling time is in the morning, afternoon and evening which is repeated in 3 times. The results showed that the comparison of NO2 and SO2 concentrations produced from coal-fired boilers was higher than shell-fired boilers, but both were still below the quality standard. Particulate concentrations in the palm oil processing industry that use coal-fired boilers are above the quality standard, while shell-fired boilers still meet quality standards.

2016 ◽  
Vol 127 ◽  
pp. 18-25 ◽  
Author(s):  
Md. Nazmul Huda ◽  
Mohd Zamin Bin Jumat ◽  
A.B.M. Saiful Islam

2017 ◽  
Vol 7 (2) ◽  
pp. 201
Author(s):  
Saut H Siahaan

Downstream palm oil industry development through concept application of cluster in North Sumatra province is become the hope of government to increase added value and competitiveness of product, but whether this concept can boost the competitiveness of the palm oil industry, remains a challenge. This is mainly related to the diversity of actors in the supply chain industry and competition in a global market that include environmental aspects. Therefore, industry cluster analysis from perspective of the supply chain of palm oil processing industry to be interesting. This study uses a qualitative exploratory approach, and primary data obtained by in-depth interviews of actors in the supply chain of palm oil processing industry in North Sumatra province in 2013 up to 2015. The analysis showed that smallholder plantations have a considerable contribution in supplying raw materials Fresh Fruit Bunches (FFB) for palm oil processing industry, hence the existence of smallholder plantations can not be excluded in the development of downstream palm oil industry. Furthermore, the results of this study also indicate that they need to encourage the establishment of governance structures industry palm oil supply chain, improvement strategies, distribution, and justice so that the distribution of benefits for the actors in the supply chain can be awakened. In this regard, efforts to promote sustainable plantation industry business is still very necessary, especially to preserve biodiversity and benefit all actors in the supply chain of palm oil industry.


2015 ◽  
Vol 101 ◽  
pp. 942-951 ◽  
Author(s):  
Mohd Zamin Jumaat ◽  
U. Johnson Alengaram ◽  
Rasel Ahmmad ◽  
Syamsul Bahri ◽  
A.B.M. Saiful Islam

2021 ◽  
Vol 16 (3) ◽  
pp. 588-600
Author(s):  
Endang Suhendi ◽  
Teguh Kurniawan ◽  
Adian Yoga Pradana ◽  
Vicky Zayan Giffari

Oil palm shell (OPS) constitutes 60% of the waste generated during the processing of palm oil. However, OPS can potentially be converted into energy and chemicals through pyrolysis. The purpose of this study is to determine and analyse the effect of acid treatment time on the characteristics of natural zeolites, which were then applied to oil palm shell pyrolysis. The effect of the acid treatment time on the products of the pyrolysis was also studied. The acid treatment time was varied: 1, 3, and 5 hours. The crystallinity of the natural zeolites was determined by       X-ray diffraction (XRD). Solid, liquid and gaseous pyrolysis products were observed. Proximate, ultimate, and heat analysis were performed on the solid product. The liquid product was characterised using gas chromatography-mass spectrometry (GC-MS). Gas Chromatography (GC) was performed to analyse the composition of the gases produced. The results obtained from this study indicate that longer reflux times reduced the crystallinity of the zeolites. The addition of the zeolite catalysts increased the liquid products of pyrolysis from 24.5 wt% over the parent to 24.6–37.1 wt% over the acid-treated natural zeolites. The reduction of oxygenated compounds in bio-oil was observed in the amount of acetic acid and acetone produced. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0). 


2019 ◽  
Vol 16 (2) ◽  
pp. 113-123
Author(s):  
Syaifullah Alli ◽  
Mukhlis Mukhlis ◽  
Lusyana Lusyana ◽  
Fauna Adibroto ◽  
Enita Suardi

AC-BC coating is one type of hot mix asphalt with a minimum thickness of 4 cm. The most important characteristic of this mixture is the stability of the surface layer where the surface layer must be able to accept all types of work loads. As a foundation layer, the asphalt content it contains must be sufficient so that it can provide a waterproof coating. The aggregate used is rather rough compared to the surface wear layer. The aggregate requirement that dominates in the asphalt mixture makes us research what materials can be used as a mixture in the asphalt mixture. Palm oil waste provides an alternative opportunity as a material making up the asphalt mixture. The intended waste is oil palm shell which can be used as a substitute for coarse aggregate in asphalt mixture. The purpose of this study is to obtain the ACO BC mix KAO calculation without using an oil palm shell and using a palm oil shell with variations of 2.5%, 5%, 7.5%, 10%, 12.5%, and 15% as substitution of coarse aggregate and know the effect of adding palm shells to the mixture of test specimens on Marshall parameter values. Before the manufacture of test specimens, the materials are tested in advance in accordance with the 2010 Revised 3 General Specifications. 3. The addition of oil palm shells to the asphalt mixture showed an increase in KAO value. Based on the results of the study, the oil palm shell was suitable as an additive to the Asphalt Concrete-Binder Course (AC-BC) mixture because it met the requirements of the 2010 Revised 3 General Bina Marga General Specifications.Keywords: mixture of AC-BC, oil palm shells, KAO, Marshall parameters


RSC Advances ◽  
2020 ◽  
Vol 10 (53) ◽  
pp. 32058-32068
Author(s):  
Sunisa Chuayjumnong ◽  
Seppo Karrila ◽  
Saysunee Jumrat ◽  
Yutthapong Pianroj

In this study, the effects of two microwave absorbers (MWAb) or catalysts, namely activated carbon (AC) and palm oil fuel ash (POFA), were investigated in microwave pyrolysis of oil palm shell (OPS).


2016 ◽  
Vol 115 ◽  
pp. 307-314 ◽  
Author(s):  
Mohammad Momeen Ul Islam ◽  
Kim Hung Mo ◽  
U. Johnson Alengaram ◽  
Mohd Zamin Jumaat

2015 ◽  
Vol 754-755 ◽  
pp. 326-330 ◽  
Author(s):  
Khairunisa Muthusamy ◽  
Nurazzimah Zamri ◽  
Iqbal Mohd Haniffa ◽  
Noor Nabilah Sarbini ◽  
Fadzil Mat Yahaya

Concern towards reducing waste disposed by Malaysian palm oil industry, palm oil fuel ash (POFA) and oil palm shell (OPS) that poses negative impact to the environment has initiated research on producing oil palm shell lightweight aggregate concrete (OPS LWAC) containing palm oil fuel ash. The present investigation looks into the effect of palm oil fuel ash content as partial cement replacement to compressive strength and acid resistance of oil palm shell lightweight aggregate concrete. Two types of mix, plain OPS LWAC and another one containing POFA as partial cement replacement have been used in this research. Cubes of 100 x 100 x 100 (mm) were water cured for 28 days before subjected to compressive strength test and acid resistance test. The findings indicate that suitable integration of POFA content would ensure occurrence of optimum pozzolanic reaction leading to densification of concrete internal structure which increases the compressive strength and better durability to acid attack. Integration of 20% POFA successfully assist concrete to achieve the highest compressive strength and exhibit superior resistance against acid attack compared to other mixes.


Sign in / Sign up

Export Citation Format

Share Document