scholarly journals Pharmacology, Pharmacognosy, Natural Medicine, and Medical Science

2019 ◽  
Vol 4 (9) ◽  

First of all, I found lots of medicine for lots of diseases like phlegm and sore throat and headache etc. I stated a Therapy for scrupulous and other kind of disease like this. Except disease and medical science and medicine and astronomy, I have some other research into/on other fields of study. I found how stars moves at constellation, they have two general movements, and in conclusion, I say some of my studies here. You drink water at stand up stance it can because you sweat a lot. My findings support my hypothesis. My hypothesis is can we have natural medicine instead of chemicals one? Does any disease have medicine? Can we success at our life? And other hypothesis that I explain it in manuscript. Most scrutinized literature was collected from different sources including PubMed. This database has been curetted using published methods for all most all pharmaceuticals. Required information for regular method development/validation such as IUPAC name, structure, solubility, chromatographic conditions, instrumentation information like HPLC, LCMS detection parameters, sample preparations, recovery details, limit of detection and limit of quantification, Tmax, Cmax etc., for routine application in BA/BE studies of pharmaceuticals was incorporated including official pharmacopeias information such as European Pharmacopeia, Japan Pharmacopeia and US Pharmacopeia. Database includes drug based bioanalytical methods covering most required fields and external database links of important drug portals such as drug bank, Rxlist, MEDLINE plus, KEGG Drug ID, KEGG Compound ID, Merck manual, PubChem compound ID, PubChem substance ID and USFDA. I use many studies and conducted my studies with lots of references that I said it at the end of my manuscript.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


Author(s):  
G.M. Kadam ◽  
A.L. Puyad ◽  
T.M. Kalyankar

A new, economical, simple, accurate, and precise RP-HPLC method was developed for simultaneous assay and content uniformity determination of Sacubitril and Valsartan in bulk and pharmaceutical dosage form. The separation of Sacubitril and Valsartan was achieved within 6 minutes on Phenomenex Luna C18 250 mm x 4.6mm and 5µm Particle Size, column using Acetonitrile: Methanol: Water (30:55:15% v/v/v) as the mobile phase. Detection was carried out at 250 nm wavelength. The retention time of Sacubitril and Valsartan was found to be 2.361 and 3.304 min, respectively. The validation of the developed method was performed in terms of specificity, accuracy, precision, linearity, the limit of detection, the limit of quantification as mentioned in International Conference on Harmonization (ICH) guidelines. The method showed adequate sensitivity concerning linearity, accuracy, and precision over the range 12-36 μg/ml and 13-39 μg/ml for Sacubitril and Valsartan, respectively. The percentage recoveries obtained for Sacubitril and Valsartan were found to be in the range of 98.00 – 102.00 %. The proposed method is suitable for use in quality-control laboratories for quantitative analysis.


Author(s):  
Pushpa Latha E. ◽  
Sailaja B.

Analytical UV derivative spectrophotometric method was developed and validated to quantify Rizatriptan Benzoate in pure drug and tablet dosage form. Based on the spectrophotometric characteristics of Rizatriptan Benzoate, a signal of zero (225nm), first (216nm), second (237nm), third (233nm), fourth (231nm) order derivative spectra were found to be adequate for quantification. The methods obeyed Beer's law in the concentration range of (0.1-360µg/ml) with square correlation coefficient (r2) of 0.999. The mean percentage recovery was found to be 100.01 ± 0.075. As per ICH guidelines the results of the analysis were validated in terms of linearity, precision, accuracy, limit of detection and limit of quantification, and were found to be satisfactory.


2021 ◽  
pp. 1-11
Author(s):  
Sultan M. Alshahrani ◽  
John Mark Christensen

This study was designed to develop and validate a simple and efficient high performance liquid chromatography (HPLC) method to determine flunixin concentrations in Asian elephant’s (Elephas maximus) plasma. Flunixin was administered orally at a dose of 0.8 mg/kg, and blood samples were collected. Flunixin extraction was performed by adding an equal amount of acetonitrile to plasma and centrifuging at 4500 rpm for 25 minutes. The supernatant was removed, and flunixin was analyzed using HPLC-UV detection. Two methods were developed and tested utilizing two different mobile phases either with or without adding methanol (ACN: H2O vs. ACN: H2O: MeOH). Both methods showed excellent linearity and reproducibility. The limit of detection was 0.05 ug/ml and limit of quantification was 0.1 ug/ml. the efficiency of flunixin recovery was maximized by the addition of methanol to mobile phase (ACN: H2O: MeOH as 50:30:20) at 95% in comparison to 23% without methanol. In conclusion, adding methanol to HPLC methods for extraction of flunixin from elephants’ plasma yielded higher recovery rate than without methanol.


Author(s):  
Ch. Jaswanth Kumar ◽  
Prachet Pinnamaneni ◽  
Siva Prasad Morla ◽  
K. N. Rajini Kanth ◽  
Rama Rao Nadendla

Aims: The main aim of the present study was to develop and validate a simple and cost- effective method for the estimation of allopurinol and its related substances by using RP-HPLC. Study Design:  Estimation of Allopurinol and its related substance in bulk and tablet dosage forms by RP-HPLC. Place and Duration of Study: Chalapathi Drug Testing Laboratory, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Lam, Guntur-522034 between October 2020 to January 2021. Methodology: Method development was carried out by using Schimadzu, Prominence-i series LC 3D-Plus autosampler embedded with lab solutions software, equipped with PDA detector using YMC column (150 mm X 4.6 mm, 3 μm) and 0.1M Ammonium acetate buffer as a mobile phase in the ratio of 100% at a flow rate of 1.0 ml/min at a wavelength of 255nm. The developed method was validated according to ICH guidelines. Results:  The linearity was observed in the range of 20-100 µg/ml with a regression (R2) value of 0.999. Developed method was specific with no interactions and accurate with 100.11% for allopurinol and 99.54% for its related substance. The limit of detection for allopurinol was 2 µg/ml and for related substance was 0.0.1 µg/ml. The limit of quantification for allopurinol was 6 µg/ml and for related substance was 0.03 µg/ml respectively. The percentage relative standard deviation was found to be NMT 2 which indicates that the proposed method was precise and robust. Conclusion:  The developed method was simple, precise and accurate and can be successfully employed for the estimation of allopurinol in bulk and tablet dosage form.


Author(s):  
Anas Rasheed ◽  
Osman Ahmed

A specific, precise, accurate ultra pressure liquid chromatography (UPLC) method is developed for estimation of chlophedianol hydrochloride in bulk drug and syrup dosage form. The method employed with Hypersil BDS C18 (100 mm x 2.1 mm, 1.7 μm) in a gradient mode, with mobile phase of methanol and acetonitrile in the ratio of 65:35 %v/v. The flow rate was 0.1 ml/min and effluent was monitored at 254 nm. Retention time was found to be 1.130±0.005 min. The method was validated in terms of linearity, accuracy, precision, limit of detection (LOD), limit of quantification (LOQ)in accordance with ICH guidelines. Linear regression analysis data for the calibration plot showed that there was good linear relationship between response and concentration in the range of 20-100 μg/ml respectively. The LOD and LOQ values were found to be 2.094(μg/ml)and 6.3466(μg/ml)respectively. No chromatographic interference from syrup excipients and degradants were found. The proposed method was successfully used for estimation of chlophedianol hydrochloride in syrup dosage form.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 59-65
Author(s):  
Vinita C. Patole ◽  
Shilpa P. Chaudhari ◽  

An attempt was made to develop a simple, selective, rapid and precise high-performance liquid chromatography (HPLC) method for simultaneous estimation of thymol and eugenol. Analysis was performed on a C18 column with the mobile phase consisting of solvent %A (water) and solvent %B (acetonitrile) with the following gradient: 0–1 min, 80 % A, 20 % B; 1–7 min, 40 % A and 60 % B; 7–12 min, 10 % A and 90 % B; and 12–15min, 80 % A and 20 % B at a flow rate of 0.6 mL/min. The compounds were well separated on a Thermo Scientific Hypersil BDS RP C18 column (4.6 mm × 150 mm, dp = 5 µm) and ultraviolet detection at 280 nm. The retention times of eugenol and thymol were 10.5 min and 11.6 min, respectively. Validation of the proposed method was carried out according to the guidelines of the International Council on Harmonization (ICH). The linearity of the method is good for thymol and eugenol over the concentration range of 1–50 ppm, and the r 2 values were 0.9996 for both thymol and eugenol. The calculated limit of detection (LOD) value was 0.5ppm and the limit of quantification (LOQ) value was 1ppm for both the analytes. The intra and interday relative standard deviation (RSD) of the retention time and peak areas was less than 3 %.The established method was appropriate, and the two markers were well resolved, enabling efficient quantitative analysis of thymol and eugenol.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (01) ◽  
pp. 28-34
Author(s):  
Yarasani Prashanthi ◽  
◽  
Faheem Ahmed ◽  
Tentu Nageswara Rao ◽  
Botsa Parvatamma ◽  
...  

A novel approach was used for develop and validate a rapid, accurate, and an isocratic RP-HPLC method with PDA detector for the estimation of ixazomib drug in pharmaceutical dosage forms. Ixazomib was seperated using Agilent 4.6*150 mm, 5μm analytical column, a Waters HPLC system (USA) and a mobile phase consisting of water and acetonitrile in the ratio of 40:60 V/V. The flow rate was set to 0.7 mL/min with 10µL injection volume. The column was maintained at ambient temperature, detector was set at wavelength of 274 nm. The retention time of ixazomib was found to be 2.17 min. The system suitability parameters for ixazomib such as theoretical plates and tailing factor were found to be 4146. Linearity was established for ixazomib such as theoretical plates and telling factor were found to be 4146. Linearilty was established for ixazomib in the range of 50-250 µg/ml concentration levels with correlation coefficients (r2) of 0.999. The intra-and inter-day precision % RSD values were found to be 0.47 and 0.31, respectively. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.03 and 6.17 µg/mL respectively. The method was validated for all of the above parameters according to the International Conference on Harmonization (ICH) guidelines. This method can be used for estimation and analysis of ixazomib drug in active pharmaceutical ingredients and pharmaceuticals.


Author(s):  
Heena Ar Shaikh ◽  
Vandana Jain

Objective: A simple, accurate, precise, robust reverse phase high performance liquid chromatography (RP-HPLC) method was developed for the estimation of telmisartan and nebivolol hydrochloride (HCl) simultaneously in its combined dosage form.Methods: The compounds were well resolved in an isocratic method using the mobile phase composition of acetonitrile: Buffer (potassium dihydrogen orthophosphate pH adjusted 3.1 with orthophosphoric acid) in a ratio of 40:60 v/v at a flow rate of 1.2 ml/min using C18 Shim-pack (150 mm × 4.6 mm, 5 μ) column. The detection was carried out at 280 nm.Results: The retention time of telmisartan and nebivolol HCl was 4.8 min and 6.5 min, respectively. The developed method was validated by evaluating various validation parameters such as linearity, precision, accuracy, robustness, specificity, limit of detection, and limit of quantification according to the international council for harmonization guidelines. The standard calibration curve was obtained in the concentration range of 24–56 μg/ml for telmisartan and 3–7 μg/ml for nebivolol HCl. The overall average % recovery was found out to be 100.35 for telmisartan and 98.84 for nebivolol HCl.Conclusion: Statistical analysis of the data showed that the method is reproducible and selective for the estimation of telmisartan and nebivolol HCl. The proposed method could be used for analysis of telmisartan and nebivolol HCl in their dosage form.


Author(s):  
Sunkara Namratha ◽  
Vijayalakshmi A

Objective: Reversed-phase high-performance liquid chromatographic method (RP-HPLC) was developed for the assessment of lopinavir in the dosage form of tablet.Methods: Chromatogram was run through using Kromosil C18 4.5×150 mm using a mobile phase methanol: water of ratio 65:35% v/v with a rate of flow of 0.8 ml/min, measured by UV spectrometric detection at 265 nm. The method developed was validated in terms of precision, accuracy, linearity, and robustness parameters.Results: Retention time of lopinavir established at 2.482 min and percentage R.S.D of lopinavir found to be 1.0% and 0.5%, respectively. The method shows that good linearity range of 30–150 μg correlation coefficient of lopinavir was 0.997. The limit of detection was 2.97 and limit of quantification was 9.92, respectively. The percent purity of lopinavir was 99.87%.Conclusion: The suggested method (Rp-HPLC) for concurrent assay lopinavir was validated, which is appropriate method for the analysis oflopinavir quantitatively in tablet dosage forms and bulk.


Sign in / Sign up

Export Citation Format

Share Document