scholarly journals Determination of Shale Volume, Shale Types and Effective Porosity Based On Cross Plotting

2018 ◽  
Vol 1 (1) ◽  

The evaluation of shaley formations has long been a difficult task. Presence of shale and shale types in some of the Iranian formations are one of the most important factors. Shale types have to be considered, because existence of shale reduces, porosity and permeability of the reservoir to some degree. Shale Distributed in formations in three basic types, Dispersed, Laminar and structural. Each of these shale types has different effect on porosity, permeability and saturation. Dispersed shale reduces porosity and permeability to a great degree, but, laminar shale and structural shale have little effect on petrophysical parameters. In this investigation, shale types, Shale volume and effective porosity of Kangan Formation have been determined from well log data and compared with crossplotting. In other words, a triangle Density-Neutron cross-plot is used to determine above parameters. The area of study lies in central oil fields of Iran, where one of the well is used (Tabnak Well C). Tabnak Well C selected to study Kangan Formation from Iranian oil field, in Pars onshore. This study illustrates that distribution of shale types in Kangan Formation is mainly dispersed shale with few of laminar shale, and percentage of effective porosity (φe) decreases with increasing depths for Kangan Formation.

2014 ◽  
Vol 651-653 ◽  
pp. 1302-1305 ◽  
Author(s):  
Zong An Xue ◽  
Yi Ping Wu

The typical characteristics of carbonate reservoir is heterogeneous. The reservoirs were deposited in slope of marginal neritic carbonate plat form and marginal reefs in Middle East Oil Field. The vuggy carbonate reservoir pore systems include intergranular pores, mould pores, intercrystal pores, micropores and dissolution fracture. I t can be divided into separate vugs and touching vugs on the basis of vug interconnection. The goal of well-log evaluation is to describe the spatial distribution of petrophysical parameters, such as porosity and permeability. Well-log evaluation and core analyses provide quantitative measurements of petrophysical parameters in the vicinity of the well bore. The key for quantifying physics models is buildup the relationship between the log data and the core analyses result. The purpose of reservoir evaluation is to use the Interactive Mineral Solver module of Interactive Physics software to solve for mineralogy, porosity and permeability. The result of the analyses shows that calculated parameters has high coherence with core sample test. For vuggy carbonate reservoir evaluation, It shows that accurate values of physics parameters can be predicted using selected module in well-log data processing and interpretation.


2021 ◽  
Vol 11 (7) ◽  
pp. 2877-2890
Author(s):  
Mohammad Abdelfattah Sarhan

AbstractNukhul Formation is one of the primary oil reservoirs in the Gulf of Suez Basin. Rabeh East is an oil producer field located at the southern border of the Gulf of Suez. The present work deals with the geophysical investigation of Nukhul Formation in Rabeh East field using seismic lines and well log data of four wells, namely RE-8, RE-22, RE-25 and Nageh-1. The interpreted seismic profiles display that the RE-8 Well is the only well drilled within the up-thrown side of a significant horst fault block bounded by two normal faults. However, the other wells penetrated the downthrown side. The qualitative interpretation of the well logging data for RE-8 Well delineated two intervals have good petrophysical parameters and ability to store and produce oil. These zones locate between depths 5411.5 and 5424 ft (zone I) and between 5451 and 5459.5 ft (zone II). The calculated petrophysical parameters for zone I display water saturation (22–44%), shale volume (10–23%), total porosity (18–23%), effective porosity (12–20%) and bulk volume of water (0.04–0.06). Zone II exhibits water saturation (13–45%), shale volume (10–30%), total porosity (18–24%), effective porosity (11–20%) and bulk volume of water (0.03–0.05). This analysis reflects excellent petrophysical characteristics for the sandstones of Nukhul Formation in Rabeh East oil field for producing oil if the wells drilled in a suitable structural closure.


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2016 ◽  
Vol 4 (2) ◽  
pp. SF165-SF177 ◽  
Author(s):  
Emmanuel Oyewole ◽  
Mehrnoosh Saneifar ◽  
Zoya Heidari

Carbonate formations consist of a wide range of pore types with different shapes, pore-throat sizes, and varying levels of pore-network connectivity. Such heterogeneous pore-network properties affect the fluid flow in the formation. However, characterizing pore-network properties (e.g., effective porosity and permeability) in carbonate formations is challenging due to the heterogeneity at different scales and complex pore structure of carbonate rocks. We have developed an integrated technique for multiscale characterization of carbonate pore structure based on mercury injection capillary pressure (MICP) measurements, X-ray micro-computed tomography (micro-CT) 3D rock images, and well logs. We have determined pore types based on the pore-throat radius distributions obtained from MICP measurements. We developed a new method for improved assessment of effective porosity and permeability in the well-log domain using pore-scale numerical simulations of fluid flow and electric current flow in 3D micro-CT core images obtained in each pore type. Finally, we conducted petrophysical rock classification based on the depth-by-depth estimates of effective porosity, permeability, volumetric concentrations of minerals, and pore types using an unsupervised artificial neural network. We have successfully applied the proposed technique to three wells in the Scurry Area Canyon Reef Operators Committee (SACROC ) Unit. Our results find that electrical resistivity measurements can be used for reliable characterization of pore structure and assessment of effective porosity and permeability in carbonate formations. The estimates of permeability in the well-log domain were cross-validated using the available core measurements. We have observed a 34% improvement in relative errors in well-log-based estimates of permeability, as compared with the core-based porosity-permeability models.


2021 ◽  
Vol 11 (5) ◽  
pp. 2075-2089
Author(s):  
Mohamed Mahmoud Elhossainy ◽  
Ahmed Kamal Basal ◽  
Hussein Tawfik ElBadrawy ◽  
Sobhy Abdel Salam ◽  
Mohammad Abdelfattah Sarhan

AbstractThis paper presents different well log data interpretation techniques for evaluating the reservoir quality for the sandstone reservoir of the Alam El-Bueib-3A Member in Safir-03 well, Shushan Basin, Egypt. The evaluation of the available well log data for the Alam El-Bueib-3A Member in this well indicated high quality as oil-producing reservoir between depths 8108–8133 ft (25 ft thick). The calculated reservoir parameters possess shale volume less than or equal to 9% indicating the clean nature of this sandstone interval, water saturation values range from 10 to 23%, and effective porosity varies between 19 and 23%. Bulk volume of water is less than 0.04, non-producing water (SWirr) saturation varies between 10 and 12%, and permeability ranges from 393 to 1339 MD reflecting excellent reservoir quality. The calculated BVW values are less than the minimum (BVWmin = 0.05) reflecting clean (no water) oil production, which was confirmed through the drill stem test (DST). The relative permeabilities to both water and oil are located between 0.01–0 and 1.0–0.5, respectively. The water cut is fairly low where it ranges between 0 and 20%. Additionally, the water saturation values are less than the critical water saturation (Scw = 29.5%) which reflects that the whole net pay will flow hydrocarbon, whereas the water phase will remain immobile. This was confirmed with reservoir engineering through the DST.


2021 ◽  
Vol 5 (2) ◽  
pp. 1-10
Author(s):  
Taheri K

Determination of petrophysical parameters is necessary for modeling hydrocarbon reservoir rock. The petrophysical properties of rocks influenced mainly by the presence of clay in sedimentary environments. Accurate determination of reservoir quality and other petrophysical parameters such as porosity, type, and distribution of reservoir fluid, and lithology are based on evaluation and determination of shale volume. If the effect of shale volume in the formation not calculated and considered, it will have an apparent impact on the results of calculating the porosity and saturation of the reservoir water. This study performed due to the importance of shale in petrophysical calculations of this gas reservoir. The shale volume and its effect on determining the petrophysical properties and ignoring it studied in gas well P19. This evaluation was performed in Formations A and B at depths of 3363.77 to 3738.98 m with a thickness of 375 m using a probabilistic calculation method. The results of evaluations of this well without considering shale showed that the total porosity was 0.1 percent, the complete water saturation was 31 percent, and the active water saturation was 29 percent, which led to a 1 percent increase in effective porosity. The difference between water saturation values in Archie and Indonesia methods and 3.3 percent shale volume in the zones show that despite the low shale volume in Formations A and B, its effect on petrophysical parameters has been significant. The results showed that if the shale effect not seen in the evaluation of this gas reservoir, it can lead to significant errors in calculations and correct determination of petrophysical parameters.


Author(s):  
S. M. Talha Qadri ◽  
Md Aminul Islam ◽  
Mohamed Ragab Shalaby ◽  
Ahmed K. Abd El-Aal

AbstractThe study used the sedimentological and well log-based petrophysical analysis to evaluate the Farewell sandstone, the reservoir formation within the Kupe South Field. The sedimentological analysis was based on the data sets from Kupe South-1 to 5 wells, comprising the grain size, permeability, porosity, the total cement concentrations, and imprints of diagenetic processes on the reservoir formation. Moreover, well log analysis was carried on the four wells namely Kupe South 1, 2, 5 and 7 wells for evaluating the parameters e.g., shale volume, total and effective porosity, water wetness and hydrocarbon saturation, which influence the reservoir quality. The results from the sedimentological analysis demonstrated that the Farewell sandstone is compositionally varying from feldspathic arenite to lithic arenite. The analysis also showed the presence of significant total porosity and permeability fluctuating between 10.2 and 26.2% and 0.43–1376 mD, respectively. The diagenetic processes revealed the presence of authigenic clay and carbonate obstructing the pore spaces along with the occurrence of well-connected secondary and hybrid pores which eventually improved the reservoir quality of the Farewell sandstone. The well log analysis showed the presence of low shale volume between 10.9 and 29%, very good total and effective porosity values ranging from 19 to 32.3% as well as from 17 to 27%, respectively. The water saturation ranged from 22.3 to 44.9% and a significant hydrocarbon saturation fluctuating from 55.1 to 77.7% was also observed. The well log analysis also indicated the existence of nine hydrocarbon-bearing zones. The integrated findings from sedimentological and well log analyses verified the Farewell sandstone as a good reservoir formation.


2019 ◽  
Vol 7 (2) ◽  
pp. 142
Author(s):  
Ubong Essien

Well log data from two wells were evaluated for shale volume, total and effective porosity. Well log data were obtained from gamma ray, neutron-density log, resistivity, sonic and caliper log respectively. This study aimed at evaluating the effect of shale volume, total and effective porosity form two well log data. The results of the analysis depict the presence of sand, sand-shale and shale formations. Hydrocarbon accumulation were found to be high in sand, fair in sand-shale and low in shale, since existence of shale reduces total and effective porosity and water saturation of the reservoir. The thickness of the reservoir ranged from 66 – 248.5ft. The average values of volume of shale, total and effective porosity values ranged from 0.004 – 0.299dec, 0.178 – 0.207dec and 0.154 – 0.194dec. Similarly, the water saturation and permeability ranged from 0.277 – 0.447dec and 36.637 - 7808.519md respectively. These values of total and effective porosity are high in sand, fair in sand-shale and low in shale formations. The results for this study demonstrate: accuracy, applicability of these approaches and enhance the proper evaluation of petrophysical parameters from well log data.    


2020 ◽  
Vol 21 (4) ◽  
pp. 41-48
Author(s):  
Layth Abdulmalik Jameel ◽  
Fadhil S. Kadhim ◽  
Hussein Al-Sudani

Petrophysical properties evaluation from well log analysis has always been crucial for the identification and assessment of hydrocarbon bearing zones. East Baghdad field is located 10 km east of Baghdad city, where the southern area includes the two southern portions of the field, Khasib formation is the main reservoir of East Baghdad oil field. In this paper, well log data of nine wells have been environmentally corrected, where the corrected data used to determine lithology, shale volume, porosity, and water saturation. Lithology identified by two methods; neutron-density and M-N matrix plots, while the shale volume estimated by single shale indicator and dual shale indicator, The porosity is calculated from the three common porosity logs; density log, neutron log, and sonic log, the water saturation is calculated by Indonesian model and Archie equation, and the results of the two methods were compared with the available core data to check the validity of the calculation. The results show that the main lithology in the reservoir is limestone, shale volume ranged between 0.152 to 0.249, porosity between 0.147 to 0.220, and water saturation from 0.627 to 0.966, the high-water saturation indicate that the water quantity is the determining factor of the reservoir units.


Sign in / Sign up

Export Citation Format

Share Document