scholarly journals Design of Low Power and Low Phase Noise Current Starved Ring Oscillator for RFID Tag EEPROM

Power dissipation of CMOS IC is a key factor in low power applications especially in RFID tag memories. Generally, tag memories like electrically erasable programmable read-only memory (EEPROM) require an internal clock generator to regulate the internal voltage level properly. In EEPROM, oscillator circuit can generate any periodic clock signal for frequency translation. Among different types of oscillators, a current starved ring oscillator (CSRO) is described in this research due to its very low current biasing source, which in turn restrict the current flows to reduce the overall power dissipation. The designed CSRO is limited to three stages to reduce the power dissipation to meet the specs. The simulated output shows that, the improved CSRO dissipates only 4.9 mW under the power supply voltage (VDD) 1.2 V in Silterra 130 nm CMOS process. Moreover, this designed oscillator has the lowest phase noise -119.38 dBc/Hz compared to other research works. In addition, the designed CSRO is able to reduce the overall chip area, which is only 0.00114 mm2. Therefore, this proposed low power and low phase noise CSRO will be able to regulate the voltage level successfully for low power RFID tag EEPROM.

2013 ◽  
Vol 479-480 ◽  
pp. 1010-1013
Author(s):  
Tsung Han Han ◽  
Meng Ting Hsu ◽  
Cheng Chuan Chung

In this paper, we present low phase noise and low power of the voltage-controlled oscillators (VCOs) for 5 GHz applications. This chip is implemented by Taiwan Semiconductor Manufacturing Company (TSMC) standard 0.18 μm CMOS process. The designed circuit topology is included a current-reused configuration. It is adopted memory-reduced tail transistor technique. At the supply voltage 1.5 v, the measured output phase noise is-116.071 dBc/Hz at 1MHz offset frequency from the carrier frequency 5.2 GHz. The core power consumption is 3.7 mW, and tuning range of frequency is about 1.3 GHz from 4.8 to 6.1 GHz. The chip area is 826.19 × 647.83 um2.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950182 ◽  
Author(s):  
Nitin Kumar ◽  
Manoj Kumar

The differential ring voltage controlled oscillator (VCO) is one of the critical devices in wireless communication system having excellent stability, controllability and noise rejection ability. A novel design of delay cell is proposed for the four staged CMOS differential ring VCO with high output frequency, low power consumption and low phase noise. The differential ring VCO utilizes multiloop dual delay path topology to acquire both high output frequency and low phase noise. Results have been achieved in TSMC 0.18-[Formula: see text]m CMOS process with a supply voltage ([Formula: see text]) 1.8[Formula: see text]V. The proposed design achieves an output frequency range of 4.029[Formula: see text]GHz to 6.122[Formula: see text]GHz and power of 4.475[Formula: see text]mW is consumed with control voltage variation from 1[Formula: see text]V to 2[Formula: see text]V. The proposed VCO exhibits [Formula: see text]89.7[Formula: see text]dBc/Hz phase noise at 1[Formula: see text]MHz offset frequency and the corresponding figure of merit (FoM) is [Formula: see text]155.9[Formula: see text]dBc/Hz. The design of differential ring VCO with novel delay stage has improved performance in terms of power consumption, output oscillation frequency and phase noise.


Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 32-41
Author(s):  
Deepak Balodi ◽  
Arunima Verma ◽  
Ananta Govindacharyulu Paravastu

Purpose The paper aims to present the novel design approach for a low power LC-voltage-controlled oscillators (VCO) design with low phase noise that too targeted at the most sought band of Bluetooth applications. Owing to their crucial role in a wide variety of modern applications, VCO and phase-locked loop (PLL) frequency synthesizers have been the subject of extensive research in recent years. In fact, VCO is one of the key components being used in a modern PLL to provide local frequency signal since a few decades. The complicated synthesizer requirements imposed by cellular phone applications have been a key driver for PLL research. Design/methodology/approach This paper first opted to present the recent developments on implemented techniques of LC-VCO designs in popular RF bands. An LC-VCO with a differential (cross-coupled) MOS structure is then presented which has aimed to compensate the losses of an on-chip inductor implemented in UMC’s 130 nm RF-CMOS process. The LC-VCO is finally targeted to embed onto the synthesizer chip, to address the narrowband (S-Band) applications where Bluetooth has been the most sought one. The stacked inductor topology has been adopted to get the benefit of its on-chip compatibility and low noise. The active differential architecture, which basically is a cross-coupled NMOS structure, has been then envisaged for the gain which counters the losses completely. Three major areas of LC-VCO design are considered and worked upon for the optimum design parameters, which includes Bluetooth coverage range of 2.410 GHz to 2.490 GHz, better linearity and high sensitivity and finally the most sought phase noise performance for an LC-VCO. Findings The work provides the complete design aspect of a novel LC-VCO design for low phase noise narrowband applications such as Bluetooth. Using tuned MOS varactor, in 130 nm-RF CMOS process, a high gain sensitivity of 194 MHz/Volt was obtained. Thus, the entire frequency range of 2415-2500 MHz for Bluetooth applications, supporting multiple standards from 3G to 5G, was covered by voltage tuning of 0.7-1.0 V. To achieve the low power dissipation, low bias (1.2 V) cross-coupled differential structure was adopted, which completely paid for the losses occurred in the LC resonator. The power dissipation comes out to be 8.56 mW which is a remarkably small value for such a high gain and low noise VCO. For the VCO frequencies in the presented LO-plan, the tank inductor was allowed to have a moderate value of inductance (8 nH), while maintaining a very high Q factor. The LC-VCO of the proposed LO-generator achieved extremely low phase noise of −140 dBc/Hz @ 1 MHz, as compared to the contemporary designs. Research limitations/implications Though a professional tool for inductor and circuit design (ADS-by Keysight Technologies) has been chosen, actual inductor and circuit implementation on silicon may still lead to various parasitic evolutions; therefore, one must have that margin pre-considered while finalizing the design and testing it. Practical implications The proposed LC-VCO architecture presented in this work shows low phase noise and wide tuning range with high gain sensitivity in S-Band, low power dissipation and narrowband nature of wireless applications. Originality/value The on-chip stacked inductor has uniquely been designed with the provided dimensions and other parameters. Though active design is in a conventional manner, its sizing and bias current selection are unique. The pool of results obtained completely preserves the originally to the full extent.


2012 ◽  
Vol 33 (7) ◽  
pp. 075004 ◽  
Author(s):  
Haijun Gao ◽  
Lingling Sun ◽  
Xiaofei Kuang ◽  
Liheng Lou

2012 ◽  
Vol 58 (5) ◽  
pp. 425 ◽  
Author(s):  
Harikrishnan Ramiah ◽  
ChongWei Keat ◽  
Jeevan Kanesan

2015 ◽  
Vol 24 (07) ◽  
pp. 1550103 ◽  
Author(s):  
Mohammad Soleimani ◽  
Siroos Toofan ◽  
Mostafa Yargholi

In this paper, a general architecture for analog implementation of loser/winner-take-all (LTA/WTA) and other rank order circuits is presented. This architecture is composed of a differential amplifier with merged n-inputs and a merged common-source with active load (MCSAL) circuit to choose the desired input. The advantages of the proposed structure are simplicity, very high resolution, very low supply voltage requirements, very low output resistor, low power dissipation, low active area and simple expansion for multiple inputs by adding only three transistors for each extra input. The post-layout simulation results of proposed circuits are presented by HSPICE software in 0.35-μm CMOS process technology. The total power dissipation of proposed circuits is about 110-μW. Also, the total active area is about 550-μm2 for five-input proposed circuits, and would be negligibly increased for each extra input.


2013 ◽  
Vol 479-480 ◽  
pp. 513-516
Author(s):  
Shuo Chang Hsu ◽  
Meng Ting Hsu ◽  
Yu Tuan Hsu

The voltage-controlled-oscillator (VCO) is one of the most important building blocks in the system. The chip fabrication of VCO is made by TSMC 0.18μm 1P6M CMOS standard process. The chip presents a low power and low phase noise for IEEE 802.11a applications, the PMOS casecode and current-reuse cross-couple technology are designed to improve phase noise and reduce power. The measured results of phase noise is-120.87 dBc/Hz at 1MHz offset frequency from the carrier frequency 5.05 GHz, and operates frequency from 5.04 GHz to 5.895 GHz with a tuning range of 17.14%. Under supply voltage 1.65V, the core power dissipation is 4.05 mW.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1258
Author(s):  
Câncio Monteiro ◽  
Yasuhiro Takahashi

Internet of Things (IoT) has enabled battery-powered devices to transmit sensitive data, while presenting high power consumption and security issues. To address these challenges, adiabatic-based physical unclonable functions (PUFs) offer a promising solution for low-power and secure IoT device applications. In this study, we propose a novel low-power two-phase clocking adiabatic PUF. The proposed adiabatic PUF utilizes a trapezoidal power clock signal with a time-ramped voltage to achieve an improved energy efficiency and reliable start-up PUF behavior. Static CMOS logic is employed to produce stable challenge-response pairs (CRPs) in the adiabatic mode. The pull-down network is designed to control the PUF cell to charge and discharge its output nodes with a constant supply current during secure key generation. The body effect of PMOS transistors, ambient temperatures, and CMOS process variations are investigated to examine the uniqueness and reliability of the proposed work. The proposed adiabatic PUF is simulated using 0.18 µm CMOS process technology with a supply voltage of 1.8 V. The uniqueness and reliability of the proposed adiabatic PUF are 49.82% and 99.47%, respectively. In addition, it requires a start-up power of 0.47 µW and consumes an energy of 15.98 fJ/bit/cycle at the reference temperature of 27 °C.


Sign in / Sign up

Export Citation Format

Share Document