scholarly journals Atmospheric Simulations Using OGCM-Assimilation SST: Influence of the Wintertime Japan Sea on Monthly Precipitation

2010 ◽  
Vol 21 (1) ◽  
pp. 113 ◽  
Author(s):  
Masaru Yamamoto ◽  
Naoki Hirose
2009 ◽  
Vol 137 (7) ◽  
pp. 2164-2174 ◽  
Author(s):  
Masaru Yamamoto ◽  
Naoki Hirose

The present study examines the influence of an assimilation SST product on simulated monthly precipitation. The high-resolution SST structures located close to the oceanic front and coastal areas are important in regional atmospheric simulations over semienclosed marginal seas such as the Japan Sea. Two simulations are conducted using assimilation and interpolation SST products (experiments R and N, respectively), for January 2005. The surface heat fluxes and PBL height in experiment R are lower than those in experiment N in coastal areas and the cold tongue. A decrease of 4 K in SST leads to decreases of 120 W m−2 in surface sensible and latent fluxes and 300 m in PBL height. The precipitation in experiment R is less than that in experiment N for the sea area except at 38°N, 137°E. The cold tongue in the central Japan Sea acts to reduce moisture supply via the latent heat flux, resulting in low precipitation in coastal areas. The fact that the difference between observed and modeled precipitation in experiment R is 21% less than that in experiment N demonstrates that the assimilation of SST data leads to improved regional atmospheric simulations of monthly precipitation.


Author(s):  
Toru Shigemi ◽  
Kagetoshi Amano ◽  
Kazuaki Mizuno ◽  
Tokuhiro Takada
Keyword(s):  

Author(s):  
Campos Cedeño Antonio Fermín ◽  
Mendoza Álava Junior Orlando

Abstract— The Manabí Hydrographic Demarcation (DHM) is characterized as the only one that does not receive input from Andes Mountains, therefore, its water network is fed exclusively by the rainfall that occurs in the rainy season and that the warm current of El Niño plays a fundamental role in its production. In order to have technical information, important for the planning, control and development of the water resources of the DHM, in this research is made a temporal analysis of the monthly precipitation for 55 years, period 1963-2017. The National Institute of Hydrology and Meteorology of Ecuador (INAMHI) in station M005, located in the Botanical Garden of the Technical University of Manabí (Universidad Técnica de Manabí) in Portoviejo, obtained these records. An analysis is made of the monthly and annual patterns, establishing that the El Niño events that occurred in 1983, 1997 and 1998, have set guidelines for the change in rainwater production at the intensity and temporal distribution levels, increasing the months of drought, while the levels of rainfall increase, concentrating in fewer months, basically in February and March. This is a situation that increases the water deficit especially when there is not enough infrastructure of hydraulic works for the storage and regulation of runoff.   Index Terms— Hydrology, rainfall, monthly distribution, annually distribution, climate change, El Niño phenomenon


2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Hyeonji Bae ◽  
Dabin Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
Naeun Jo ◽  
...  

The cellular macromolecular contents and energy value of phytoplankton as primary food source determine the growth of higher trophic levels, affecting the balance and sustainability of oceanic food webs. Especially, proteins are more directly linked with basic functions of phytoplankton biosynthesis and cell division and transferred through the food chains. In recent years, the East/Japan Sea (EJS) has been changed dramatically in environmental conditions, such as physical and chemical characteristics, as well as biological properties. Therefore, developing an algorithm to estimate the protein concentration of phytoplankton and monitor their spatiotemporal variations on a broad scale would be invaluable. To derive the protein concentration of phytoplankton in EJS, the new regional algorithm was developed by using multiple linear regression analyses based on field-measured data which were obtained from 2012 to 2018 in the southwestern EJS. The major factors for the protein concentration were identified as chlorophyll-a (Chl-a) and sea surface nitrate (SSN) in the southwestern EJS. The coefficient of determination (r2) between field-measured and algorithm-derived protein concentrations was 0.55, which is rather low but reliable. The satellite-derived estimation generally follows the 1:1 line with the field-measured data, with Pearson’s correlation coefficient, which was 0.40 (p-value < 0.01, n = 135). No remarkable trend in the long-term annual protein concentration of phytoplankton was found in the study area during our observation period. However, some seasonal difference was observed in winter protein concentration between the 2003–2005 and 2017–2019 periods. The algorithm is developed for the regional East/Japan Sea (EJS) and could contribute to long-term monitoring for climate-associated ecosystem changes. For a better understanding of spatiotemporal variation in the protein concentration of phytoplankton in the EJS, this algorithm should be further improved with continuous field surveys.


Sign in / Sign up

Export Citation Format

Share Document