scholarly journals Regional Atmospheric Simulation of Monthly Precipitation Using High-Resolution SST Obtained from an Ocean Assimilation Model: Application to the Wintertime Japan Sea

2009 ◽  
Vol 137 (7) ◽  
pp. 2164-2174 ◽  
Author(s):  
Masaru Yamamoto ◽  
Naoki Hirose

The present study examines the influence of an assimilation SST product on simulated monthly precipitation. The high-resolution SST structures located close to the oceanic front and coastal areas are important in regional atmospheric simulations over semienclosed marginal seas such as the Japan Sea. Two simulations are conducted using assimilation and interpolation SST products (experiments R and N, respectively), for January 2005. The surface heat fluxes and PBL height in experiment R are lower than those in experiment N in coastal areas and the cold tongue. A decrease of 4 K in SST leads to decreases of 120 W m−2 in surface sensible and latent fluxes and 300 m in PBL height. The precipitation in experiment R is less than that in experiment N for the sea area except at 38°N, 137°E. The cold tongue in the central Japan Sea acts to reduce moisture supply via the latent heat flux, resulting in low precipitation in coastal areas. The fact that the difference between observed and modeled precipitation in experiment R is 21% less than that in experiment N demonstrates that the assimilation of SST data leads to improved regional atmospheric simulations of monthly precipitation.

2007 ◽  
Vol 46 (6) ◽  
pp. 694-713 ◽  
Author(s):  
Fei Chen ◽  
Kevin W. Manning ◽  
Margaret A. LeMone ◽  
Stanley B. Trier ◽  
Joseph G. Alfieri ◽  
...  

Abstract This paper describes important characteristics of an uncoupled high-resolution land data assimilation system (HRLDAS) and presents a systematic evaluation of 18-month-long HRLDAS numerical experiments, conducted in two nested domains (with 12- and 4-km grid spacing) for the period from 1 January 2001 to 30 June 2002, in the context of the International H2O Project (IHOP_2002). HRLDAS was developed at the National Center for Atmospheric Research (NCAR) to initialize land-state variables of the coupled Weather Research and Forecasting (WRF)–land surface model (LSM) for high-resolution applications. Both uncoupled HRDLAS and coupled WRF are executed on the same grid, sharing the same LSM, land use, soil texture, terrain height, time-varying vegetation fields, and LSM parameters to ensure the same soil moisture climatological description between the two modeling systems so that HRLDAS soil state variables can be used to initialize WRF–LSM without conversion and interpolation. If HRLDAS is initialized with soil conditions previously spun up from other models, it requires roughly 8–10 months for HRLDAS to reach quasi equilibrium and is highly dependent on soil texture. However, the HRLDAS surface heat fluxes can reach quasi-equilibrium state within 3 months for most soil texture categories. Atmospheric forcing conditions used to drive HRLDAS were evaluated against Oklahoma Mesonet data, and the response of HRLDAS to typical errors in each atmospheric forcing variable was examined. HRLDAS-simulated finescale (4 km) soil moisture, temperature, and surface heat fluxes agreed well with the Oklahoma Mesonet and IHOP_2002 field data. One case study shows high correlation between HRLDAS evaporation and the low-level water vapor field derived from radar analysis.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 504 ◽  
Author(s):  
Fahad Al Senafi ◽  
Ayal Anis ◽  
Viviane Menezes

The air–sea heat fluxes in marginal seas and under extreme weather conditions constitute an essential source for energy transport and mixing dynamics. To reproduce these effects in numerical models, we need a better understanding of these fluxes. In response to this demand, we undertook a study to examine the surface heat fluxes in the Arabian Gulf (2013 to 2014) and Red Sea (2008 to 2010)—the two salty Indian Ocean marginal seas. We use high-quality buoy observations from offshore meteorological stations and data from two reanalysis products, the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA2) from the National Aeronautics and Space Administration (NASA) and ERA5, the fifth generation of the European Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses of global climate. Comparison of the reanalyses with the in situ-derived fluxes shows that both products underestimate the net heat fluxes in the Gulf and the Red Sea, with biases up to −45 W/m 2 in MERRA2. The reanalyses reproduce relatively well the seasonal variability in the two regions and the effects of wind events on air–sea fluxes. The results suggest that when forcing numerical models, ERA5 might provide a preferable dataset of surface heat fluxes for the Arabian Gulf while for the Red Sea the MERRA2 seems preferable.


2014 ◽  
Vol 11 (9) ◽  
pp. 2443-2454 ◽  
Author(s):  
J.-Y. Kim ◽  
D.-J. Kang ◽  
T. Lee ◽  
K.-R. Kim

Abstract. Anthropogenic carbon is responsible for both global warming and ocean acidification. Efforts are underway to understand the role of ocean in a high CO2 world on a global context. However, marginal seas received little attention despite their significant contribution to biogeochemical cycles. Here we report the CO2 increase and ocean acidification in the surface waters of the Ulleung Basin (UB) of the East/Japan Sea, and possible causes are discussed. Fourteen observations of surface fCO2 were made in the period from 1995 to 2009. The contribution of temperature variation to the seasonality of fCO2 was almost equivalent to the non-thermal effect in the UB. However, the difference of relative contribution with the season makes two seasonal peaks of fCO2 in the surface water of the UB. Non-thermal effect contributed to the surface fCO2 drawdown in summer, whereas the surface fCO2 elevation in winter. The decadal trend of fCO2 increment was estimated by harmonic analysis. The estimated rates of increase of fCO2 were 1.8 ± 0.4 μatm yr−1 for the atmosphere and 2.7 ± 1.1 μatm yr−1 for the surface water. The ocean acidification trend, calculated from total alkalinity and fCO2, was estimated to be −0.03 ± 0.02 pH units decade−1. These rates seem to be higher than observations at most other ocean time-series sites during the same period of time. Sustained observations are required to understand more accurate trend in this area.


2020 ◽  
Author(s):  
Torben Koenigk ◽  
Ramon Fuentes-Franco ◽  
Virna Meccia ◽  
Oliver Gutjahr ◽  
Laura C. Jackson ◽  
...  

Abstract. Simulations from seven global coupled climate models performed at high and standard resolution as part of the High Resolution Model Intercomparison Project (HighResMIP) have been analyzed to study the impact of horizontal resolution in both ocean and atmosphere on deep ocean convection in the North Atlantic and to evaluate the robustness of the signal across models. The representation of convection varies strongly among models. Compared to observations from ARGO-floats, most models substantially overestimate deep water formation in the Labrador Sea. In the Greenland Sea, some models overestimate convection while others show too weak convection. In most models, higher ocean resolution leads to increased deep convection in the Labrador Sea and reduced convection in the Greenland Sea. Increasing the atmospheric resolution has only little effect on the deep convection, except in two models, which share the same atmospheric component and show reduced convection. Simulated convection in the Labrador Sea is largely governed by the release of heat from the ocean to the atmosphere. Higher resolution models show stronger surface heat fluxes than the standard resolution models in the convection areas, which promotes the stronger convection in the Labrador Sea. In the Greenland Sea, the connection between high resolution and ocean heat release to the atmosphere is less robust and there is more variation across models in the relation between surface heat fluxes and convection. Simulated freshwater fluxes have less impact than surface heat fluxes on convection in both the Greenland and Labrador Sea and this result is insensitive to model resolution. is not robust across models. The mean strength of the Labrador Sea convection is important for the mean Atlantic Meridional Overturning Circulation (AMOC) and in around half of the models the variability of Labrador Sea convection is a significant contributor to the variability of the AMOC.


Author(s):  
J.S. Bow ◽  
R.W. Carpenter ◽  
M.J. Kim

A prominent characteristic of high-resolution images of 6H-SiC viewed from [110] is a zigzag shape with a period of 6 layers as shown in Fig.1. Sometimes the contrast is same through the 6 layers of (0006) planes (Fig.1a), but in most cases it appears as in Fig.1b -- alternate bright/dark contrast among every three (0006) planes. Alternate bright/dark contrast is most common for the thicker specimens. The SAD patterns of these two types of image are almost same, and there is no indication that the difference results from compositional ordering. O’Keefe et al. concluded this type of alternate contrast was due to crystal tilt in thick parts of the specimen. However, no detailed explanation was given. Images of similar character from Ti3Al, which is also a hexagonal crystal, were reported by Howe et al. Howe attributed the bright/dark contrast among alternate (0002) Ti3Al planes to phase shifts produced by incident beam tilt.


Sign in / Sign up

Export Citation Format

Share Document