scholarly journals Climate Change Impacts on Runoff Regimes at a River Basin Scale in Central Vietnam

2012 ◽  
Vol 23 (5) ◽  
pp. 541 ◽  
Author(s):  
Do Hoai Nam ◽  
Keiko Udo ◽  
Akira Mano
2018 ◽  
Vol 246 ◽  
pp. 01099
Author(s):  
Jun Yin ◽  
Zhe Yuan ◽  
Run Wang

The projection of surface runoff in the context of climate change is important to the rational utilization and distribution of water resources. This study did a case study in regions above Danjiangkou in Hanjiang River Basin. A basin scale hydrological model was built based on macroscale processes of surface runoff and water-energy balance. This model can describe the quantity relationship among climatic factors, underlying surface and surface runoff. Driven by hypothetical climatic scenarios and climate change dataset coming from CMIP5, the climate change impacts on surface runoff in the regions above Danjiangkou in Hanjiang River Basin can be addressed. The results showed that: (1) Compared with other distributed hydrological models, the hydrological model in this study has fewer parameters and simpler calculation methods. The model was good at simulating annual surface runoff. (2) The surface runoff was less sensitivity to climate change in the regions above Danjiangkou in Hanjiang River Basin. A 1°C increase in temperature might results in a surface runoff decrease of 2~5% and a 10% precipitation increase might result in a streamflow increase of 14~17%. (3) The temperature across the Fu River Basin were projected to increase by 1.4~2.3°C in 1961 to 1990 compared with that in 1961 to 1990. But the uncertainty existed among the projection results of precipitation. The surface runoff was excepted to decrease by 1.3~23.9% without considering the climate change projected by NorESM1-M and MIROC-ESM-CHEM, which was much different from other GCMs.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1218
Author(s):  
Hemakanth Selvarajah ◽  
Toshio Koike ◽  
Mohamed Rasmy ◽  
Katsunori Tamakawa ◽  
Akio Yamamoto ◽  
...  

Climate change is increasingly sensed by nations vulnerable to water-related disasters, and governments are acting to mitigate disasters and achieve sustainable development. Uncertainties in General Circulation Models’ (GCM) rainfall projections and seamless long-term hydrological simulations incorporating warming effects are major scientific challenges in assessing climate change impacts at the basin scale. Therefore, the Data Integration and Analysis System (DIAS) of Japan and the Water Energy Budget-based Rainfall-Runoff-Inundation model (WEB-RRI) were utilized to develop an integrated approach, which was then applied to the Mahaweli River Basin (MRB) in Sri Lanka to investigate climate change impacts on its hydro-meteorological characteristics. The results for the Representative Concentration Pathway (RCP8.5) scenario from four selected GCMs showed that, with an average temperature increase of 1.1 °C over the 20 years in future (2026 to 2045), the basin will experience more extreme rainfall (increase ranging 204 to 476 mm/year) and intense flood disasters and receive sufficient water in the future climate (inflow increases will range between 11 m3/s to 57 m3/s). The socio-economic damage due to flood inundation will also increase in the future climate. However, qualitatively, the overall trend of model responses showed an increasing pattern in future meteorological droughts whereas there is uncertainty in hydrological droughts. Policymakers can utilize these results and react to implementing soft or hard countermeasures for future policymaking. The approach can be implemented for climate change impact assessment of hydro-meteorology in any other river basin worldwide.


2018 ◽  
Vol 56 (6) ◽  
pp. 732
Author(s):  
Anh Thi Van Vu ◽  
Thuc Tran ◽  
Minh Truong Ha ◽  
Lanh Thi Minh Pham

A top-down approach begins with Global Climate Models (GCMs) is a common method for assessing climate change impacts on water resources in river basins. To overcome the coarse resolution of GCMs, dynamic downscaling by regional climate models (RCMs) with bias-correction procedures is utilized with the aim to reflect the meteorological features at the river basin scale. However, the results still entail large uncertainties. This paper examines the ability to capture the observed baseline temperature and precipitation (1986-2005) in the Ba River Basin from GCM outputs, RCM outputs, bias-corrected GCM outputs and bias-corrected RCM outputs by analyzing statistical indicators between historical simulations and observed data in 4 temperature and 6 rainfall stations. Bias-corrected results of both GCM and RCM have significantly smaller errors compared to the unbias-corrected ones. The uncertainty of future climate projection for the mid and late 21th century of the bias-corrected GCMs and RCMs are evaluated. It is found that there is still uncertainty in projected results. A concept of “Decision-Scaling” which combines top-down and bottom-up approaches is proposed to assess the climate change impacts on hydrological system to take into account uncertainties of climate projections by models.


2020 ◽  
Vol 186 ◽  
pp. 109544 ◽  
Author(s):  
Thundorn Okwala ◽  
Sangam Shrestha ◽  
Suwas Ghimire ◽  
S. Mohanasundaram ◽  
Avishek Datta

Water Policy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 768-788
Author(s):  
Nitin Bassi ◽  
Guido Schmidt ◽  
Lucia De Stefano

Abstract The main objective of this research paper is to assess the extent to which the concept of water accounting has been applied for water management at the river basin scale in India. For this, the study first assesses the importance given to the use of water accounting for water management in India's national water policy. It then analyses the evolution of water accounting approaches in India through a systematic review of the past research studies on the theme. Further, it looks at their contribution to decision-making concerning allocation of water resources and resolving conflicts over water sharing. Finally, it identifies the existing gaps in the methodologies for water accounting so far used in India.


Sign in / Sign up

Export Citation Format

Share Document