scholarly journals Monsoon effect simulation on typhoon rainfall potential - Typhoon Morakot (2009)

2017 ◽  
Vol 28 (1) ◽  
pp. 11-21
Author(s):  
Yi-Ling Chang ◽  
Hsi-Chyi Yeh ◽  
Gin-Rong Liu ◽  
Chian-Yi Liu ◽  
Chung-Chih Liu ◽  
...  
2014 ◽  
Vol 28 (1) ◽  
pp. 66-85 ◽  
Author(s):  
Chung-Chieh Wang ◽  
Bo-Xun Lin ◽  
Cheng-Ta Chen ◽  
Shih-How Lo

Abstract To quantify the effects of long-term climate change on typhoon rainfall near Taiwan, cloud-resolving simulations of Typhoon (TY) Sinlaku and TY Jangmi, both in September 2008, are performed and compared with sensitivity tests where these same typhoons are placed in the climate background of 1950–69, which is slightly cooler and drier compared to the modern climate of 1990–2009 computed using NCEP–NCAR reanalysis data. Using this strategy, largely consistent responses are found in the model although only two cases are studied. In control experiments, both modern-day typhoons yield more rainfall than their counterpart in the sensitivity test using past climate, by about 5%–6% at 200–500 km from the center for Sinlaku and roughly 4%–7% within 300 km of Jangmi, throughout much of the periods simulated. In both cases, the frequency of more-intense rainfall (20 to >50 mm h−1) also increases by about 5%–25% and the increase tends to be larger toward higher rain rates. Results from the water budget analysis, again quite consistent between the two cases, indicate that the increased rainfall from the typhoons in the modern climate is attributable to both a moister environment (by 2.5%–4%) as well as, on average, a more active secondary circulation of the storm. Thus, a changing climate may already have had a discernible impact on TC rainfall near Taiwan. While an overall increase in TC rainfall of roughly 5% may not seem large, it is certainly not insignificant considering that the long-term trend observed in the past 40–50 yr, whatever the causes might be, may continue for many decades in the foreseeable future.


2010 ◽  
Vol 125 (5) ◽  
pp. 637-641 ◽  
Author(s):  
Chun-Yen Lin ◽  
Tsun-Ying Huang ◽  
Hsuan-Cheng Shih ◽  
Chiao-Hsuan Yuan ◽  
Liang-Ju Chen ◽  
...  
Keyword(s):  

2010 ◽  
Vol 10 (10) ◽  
pp. 2179-2190 ◽  
Author(s):  
F. Tsai ◽  
J.-H. Hwang ◽  
L.-C. Chen ◽  
T.-H. Lin

Abstract. On 8 August 2009, the extreme rainfall of Typhoon Morakot triggered enormous landslides in mountainous regions of southern Taiwan, causing catastrophic infrastructure and property damages and human casualties. A comprehensive evaluation of the landslides is essential for the post-disaster reconstruction and should be helpful for future hazard mitigation. This paper presents a systematic approach to utilize multi-temporal satellite images and other geo-spatial data for the post-disaster assessment of landslides on a regional scale. Rigorous orthorectification and radiometric correction procedures were applied to the satellite images. Landslides were identified with NDVI filtering, change detection analysis and interactive post-analysis editing to produce an accurate landslide map. Spatial analysis was performed to obtain statistical characteristics of the identified landslides and their relationship with topographical factors. A total of 9333 landslides (22 590 ha) was detected from change detection analysis of satellite images. Most of the detected landslides are smaller than 10 ha. Less than 5% of them are larger than 10 ha but together they constitute more than 45% of the total landslide area. Spatial analysis of the detected landslides indicates that most of them have average elevations between 500 m to 2000 m and with average slope gradients between 20° and 40°. In addition, a particularly devastating landslide whose debris flow destroyed a riverside village was examined in depth for detailed investigation. The volume of this slide is estimated to be more than 2.6 million m3 with an average depth of 40 m.


2015 ◽  
Vol 15 (6) ◽  
pp. 8479-8523
Author(s):  
C.-C. Wang ◽  
H.-C. Kuo ◽  
R. H. Johnson ◽  
C.-Y. Lee ◽  
S.-Y. Huang ◽  
...  

Abstract. This paper investigates the formation and evolution of deep convection inside the east–west oriented rainbands associated with a low-level jet (LLJ) in Typhoon Morakot (2009). With typhoon center to the northwest of Taiwan, the westerly LLJ was resulted from the interaction of typhoon circulation with the southwest monsoon flow, which supplied the water vapor for the extreme rainfall (of ~1000 mm) over southwestern Taiwan. The Cloud-Resolving Storm Simulator with 1 km grid spacing was used to simulate the event, and it successfully reproduced the slow-moving rainbands, the embedded cells, and the dynamics of merger and back-building (BB) on 8 August as observed. Our model results suggest that the intense convection interacted strongly with the westerly LLJ that provided reversed vertical wind shear below and above the jet core. Inside mature cells, significant dynamical pressure perturbations (pd') are induced with positive (negative) pd' at the western (eastern) flank of the updraft near the surface and a reversed pattern aloft (>2 km). This configuration produced an upward directed pressure gradient force (PGF) to the rear side and favors new development to the west, which further leads to cell merger as the mature cells slowdown in eastward propagation. The strong updrafts also acted to elevate the jet and enhance the local vertical wind shear at the rear flank. Additional analysis reveals that the upward PGF there is resulted mainly by the shearing effect but also by the extension of upward acceleration at low levels. In the horizontal, the upstream-directed PGF induced by the rear-side positive pd' near the surface is much smaller, but can provide additional convergence for BB development upstream. Finally, the cold-pool mechanism for BB appears to be not important in the Morakot case, as the conditions for strong evaporation in downdrafts do not exist.


2014 ◽  
Vol 2 (1) ◽  
pp. 315-346
Author(s):  
J.-C. Chen ◽  
M.-R. Chuang

Abstract. Three debris-flow gullies, the Hong-Shui-Xian, Sha-Xin-Kai, and the Xin-Kai-Dafo gullies, located in the Shinfa area of southern Taiwan were selected as case studies of the discharge of landslide-induced debris flows caused by Typhoon Morakot in 2009. The inundation characteristics of the three debris flows, such as the debris-flow volume, the deposition area, maximum flow depth, and deposition depth, were collected by field investigations and simulated using the numerical modeling software FLO-2D. The discharge coefficient cb, defined as the ratio of the debris-flow discharge Qdp to the water-flow discharge Qwp, was proposed to determine Qdp, and Qwp was estimated by a rational equation. Then, cb was calibrated by a comparison between the field investigation and the numerical simulation of the inundation characteristics of debris flows. Our results showed that the values of cb range from 6 to 18, and their values are affected by the landslide ratio The empirical relationships between Qdp and Qwp were also presented.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sung Lun Tsai ◽  
Chiho Ochiai ◽  
Min Hui Tseng ◽  
Chuan Zhong Deng

Purpose The participatory method, a major factor for a successful post-disaster reconstruction (PDR) project, is applied in various stages of the PDR. However, the application of this method for PDR involving indigenous populations is underexplored. Therefore, this paper aims to analyze the critical factors that can influence the participatory PDR in the indigenous context. Design/methodology/approach Two large-scale, indigenous, post-disaster relocation projects after the 2009 Typhoon Morakot were selected as case studies. The qualitative and quantitative methodology (semi-structured interview and questionnaire) were applied in the research. Findings A participation-friendly policy, community organization, the extent of damage, flexibility of nongovernmental organizations, understanding of the participatory concept and mutual trust were found to be essential factors that profoundly influence participation in PDR projects. Originality/value This study contributes by providing guidelines for future participatory PDR projects, especially in the indigenous context.


Sign in / Sign up

Export Citation Format

Share Document