scholarly journals Copperas as Iron-Based Coagulant for Water and Wastewater Treatment: A Review

2021 ◽  
Vol 12 (3) ◽  
pp. 4155-4176

Ferrous sulfate, known as copperas, is generated from the titanium dioxide manufacturing industries. This by-product has been used in cement processing, agriculture, animal feed sector, printing industries, and water treatment. The coagulation/flocculation process is one of the treatment processes that can be used in this type of chemical coagulant in treating the water or wastewater sample. Considering the coagulation/flocculation process factor, copperas may be a coagulant that gives high removal efficiency. The main objective of the review is to identify the performance of copperas or a combination of copperas with other treatment or chemicals to unlocking its potential in the coagulation/flocculation process.

Author(s):  
Nurazim Ibrahim ◽  
Sharifah Farah Fariza Syed Zainal ◽  
Hamidi Abdul Aziz

The presence of hazardous micropollutants in water and wastewater is one of the main concerns in water management system. This micropollutant exists in a low concentration, but there are possible hazards to humans and organisms living in the water. Moreover, its character that is recalcitrant to microbiological degradation makes it difficult to deal with. Advanced oxidation processes (AOPs) are efficient methods to remove low concentration micropollutants. AOPs are a set of processes consisting the production of very reactive oxygen species which able to destroy a wide range of organic compounds. The main principal mechanism in UV-based radical AOP treatment processes is the use ultraviolet light to initiate generation of hydroxyl radicals used to destroy persistent organic pollutants. Therefore, this chapter presents an overview on the principle of radical oxidant species generation and degradation mechanism by various type of UV based AOP in treating contaminants present in water and wastewater. The current application and possible improvement of the technology is also presented in this chapter.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Anastasios Zouboulis ◽  
Ioannis Katsoyiannis

The present Special Issue brought together recent research findings from renowned scientists in this field and assembled contributions on advanced technologies that have been applied to the treatment of wastewater and drinking water, with an emphasis on novel membrane treatment technologies. The 12 research contributions highlight various processes and technologies that can achieve the effective treatment and purification of wastewater and drinking water, aiming (occasionally) for water reuse. The published papers can be classified into three major categories. (a) First, there are those that investigate the application of membrane treatment processes, either directly or in hybrid processes. The role of organic matter presence and fouling control is the main aim of the research in some of these studies. (b) Second, there are studies that investigate the application of adsorptive processes for the removal of contaminants from waters, such as arsenic, antimony, or chromate, with the aim of the efficient removal of the toxic contaminants from water or wastewater. (c) Lastly, there are studies that include novel aspects of oxidative treatment such as bubbleless ozonation.


2005 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Virender K. Sharma ◽  
Futaba Kazama ◽  
Hu Jiangyong ◽  
Ajay K. Ray

Iron(VI) and iron(V), known as ferrates, are powerful oxidants and their reactions with pollutants are typically fast with the formation of non-toxic by-products. Oxidations performed by Fe(VI) and Fe(V) show pH dependence; faster rates are observed at lower pH. Fe(VI) shows excellent disinfectant properties and can inactivate a wide variety of microorganisms at low Fe(VI) doses. Fe(VI) also possesses efficient coagulation properties and enhanced coagulation can also be achieved using Fe(VI) as a preoxidant. The reactivity of Fe(V) with pollutants is approximately 3–5 orders of magnitude faster than that of Fe(VI). Fe(V) can thus be used to oxidize pollutants and inactivate microorganisms that have resistance to Fe(VI). The final product of Fe(VI) and Fe(V) reduction is Fe(III), a non-toxic compound. Moreover, treatments by Fe(VI) do not give any mutagenic/carcinogenic by-products, which make ferrates environmentally friendly ions. This paper reviews the potential role of iron(VI) and iron(V) as oxidants and disinfectants in water and wastewater treatment processes. Examples are given to demonstrate the multifunctional properties of ferrates to purify water and wastewater


Author(s):  
Mamatha Hopanna ◽  
Kiranmayi Mangalgiri ◽  
Temitope Ibitoye ◽  
Daniel Ocasio ◽  
Sebastian Snowberger ◽  
...  

2004 ◽  
Vol 50 (12) ◽  
pp. 119-124 ◽  
Author(s):  
K.W. Chau

The fractal structure and particle size of flocs are generally recognized as the two most crucial physical properties having impact on the efficiency of operation of several unit processes in water and wastewater treatment. In this study, an experimental investigation is undertaken on the effect of aggregate structure in water and wastewater treatment in Hong Kong. The fractal dimension of the resulting aggregate is employed as a measure of the aggregate structure. Small angle light scattering technique is used here. Different amounts of polymers are mixed to bacterial suspensions and the resulting structures are examined. The addition of polymer may foster aggregate formation by neutralization of the bacterial surface charge and enhance inter-particle bridging. The aggregation behavior may affect the efficiency of certain water and wastewater treatment processes such as dewatering and coagulation. The impacts of aggregate structure on two representative processes, namely, ultra-filtration membrane fouling and pressure filter dewatering efficiency, are studied. It is found that the looser flocs yield a more porous cake and less tendency to foul whilst more porous filter cakes yield more ready biosolids dewatering.


The Analyst ◽  
2018 ◽  
Vol 143 (23) ◽  
pp. 5629-5645 ◽  
Author(s):  
Piumie Rajapaksha P. ◽  
Aoife Power ◽  
Shaneel Chandra ◽  
James Chapman

The availability of safe water has a significant impact on all parts of society, its growth and sustainability, both politically and socioeconomically.


Research into the wide possibilities of membrane-based applications is an interesting subject for the modern study of membrane science and technology. Membrane processes have been established as viable and recognized separation techniques in water and wastewater treatment processes. Membranes can be prepared into many forms, each with its intrinsic properties which ultimately determine its suitability for specific applications as well as the overall performance of the process. Thus, this chapter highlights the fundamental concepts of membranes and membrane processes. The critical parameters in membrane processes, and membranes' structural characteristics and parameters are reviewed.


Sign in / Sign up

Export Citation Format

Share Document