scholarly journals Ferrates (iron(VI) and iron(V)): Environmentally friendly oxidants and disinfectants

2005 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Virender K. Sharma ◽  
Futaba Kazama ◽  
Hu Jiangyong ◽  
Ajay K. Ray

Iron(VI) and iron(V), known as ferrates, are powerful oxidants and their reactions with pollutants are typically fast with the formation of non-toxic by-products. Oxidations performed by Fe(VI) and Fe(V) show pH dependence; faster rates are observed at lower pH. Fe(VI) shows excellent disinfectant properties and can inactivate a wide variety of microorganisms at low Fe(VI) doses. Fe(VI) also possesses efficient coagulation properties and enhanced coagulation can also be achieved using Fe(VI) as a preoxidant. The reactivity of Fe(V) with pollutants is approximately 3–5 orders of magnitude faster than that of Fe(VI). Fe(V) can thus be used to oxidize pollutants and inactivate microorganisms that have resistance to Fe(VI). The final product of Fe(VI) and Fe(V) reduction is Fe(III), a non-toxic compound. Moreover, treatments by Fe(VI) do not give any mutagenic/carcinogenic by-products, which make ferrates environmentally friendly ions. This paper reviews the potential role of iron(VI) and iron(V) as oxidants and disinfectants in water and wastewater treatment processes. Examples are given to demonstrate the multifunctional properties of ferrates to purify water and wastewater

2007 ◽  
Vol 55 (1-2) ◽  
pp. 225-232 ◽  
Author(s):  
V.K. Sharma

Ferrate(VI) [FeVIO2−4, Fe(VI)] has excellent disinfectant properties and can inactivate a wide variety of microorganisms at low Fe(VI) dosages. The final product of Fe(VI) is Fe(III), a non-toxic compound. The treatment by Fe(VI) does not give any chlorination by-products, which makes Fe(VI) an environmentally-friendly ion. The results demonstrate that Fe(VI) can inactivate Escherichia coli (E. coli) at lower dosages or shorter contact time than hypochlorite. Fe(VI) can also kill many chlorine resistant organisms, such as aerobic spore-formers and sulphite-reducing clostridia, and would be highly effective in treating emerging toxins in the aquatic environment. Fe(VI) can thus be used as an effective alternate disinfectant for the treatment of water and wastewater. Moreover, Fe(VI) is now becoming economically available in commercial quantities and can be used as a treatment chemical to meet the water demand of this century. This paper reviews the potential role of Fe(VI) as disinfectant in water and wastewater treatment processes.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Anastasios Zouboulis ◽  
Ioannis Katsoyiannis

The present Special Issue brought together recent research findings from renowned scientists in this field and assembled contributions on advanced technologies that have been applied to the treatment of wastewater and drinking water, with an emphasis on novel membrane treatment technologies. The 12 research contributions highlight various processes and technologies that can achieve the effective treatment and purification of wastewater and drinking water, aiming (occasionally) for water reuse. The published papers can be classified into three major categories. (a) First, there are those that investigate the application of membrane treatment processes, either directly or in hybrid processes. The role of organic matter presence and fouling control is the main aim of the research in some of these studies. (b) Second, there are studies that investigate the application of adsorptive processes for the removal of contaminants from waters, such as arsenic, antimony, or chromate, with the aim of the efficient removal of the toxic contaminants from water or wastewater. (c) Lastly, there are studies that include novel aspects of oxidative treatment such as bubbleless ozonation.


Author(s):  
Nurazim Ibrahim ◽  
Sharifah Farah Fariza Syed Zainal ◽  
Hamidi Abdul Aziz

The presence of hazardous micropollutants in water and wastewater is one of the main concerns in water management system. This micropollutant exists in a low concentration, but there are possible hazards to humans and organisms living in the water. Moreover, its character that is recalcitrant to microbiological degradation makes it difficult to deal with. Advanced oxidation processes (AOPs) are efficient methods to remove low concentration micropollutants. AOPs are a set of processes consisting the production of very reactive oxygen species which able to destroy a wide range of organic compounds. The main principal mechanism in UV-based radical AOP treatment processes is the use ultraviolet light to initiate generation of hydroxyl radicals used to destroy persistent organic pollutants. Therefore, this chapter presents an overview on the principle of radical oxidant species generation and degradation mechanism by various type of UV based AOP in treating contaminants present in water and wastewater. The current application and possible improvement of the technology is also presented in this chapter.


2016 ◽  
Vol 4 (2) ◽  
pp. 345-361 ◽  
Author(s):  
Pawan Kumar ◽  
Ki-Hyun Kim ◽  
Eilhann E. Kwon ◽  
Jan E. Szulejko

Recently, the potential role of MOFs/PCPs has been recognized in AQM due to their intrinsically tunable chemical structure and multifunctional properties which afford significant enhancements in adsorption capacities, catalytic degradation, and removal of diverse airborne pollutants.


2008 ◽  
Vol 80 (8) ◽  
pp. 1849-1858 ◽  
Author(s):  
Paul Wentworth ◽  
Daniel P. Witter

The intrinsic ability of all antibodies to generate hydrogen peroxide (H2O2) from singlet dioxygen (1O2*) via the antibody-catalyzed water-oxidation pathway (ACWOP) has triggered a rethink of the potential role of antibodies both in immune defense, inflammation, and disease. It has been shown that photochemical activation of this pathway is highly bactericidal. More recently, cholesterol oxidation by-products that may arise from the ACWOP have been discovered in vivo and are receiving a great deal of attention as possible key players in atherosclerosis and diseases of protein misfolding, such as Alzheimer's disease and Parkinson's disease.


Author(s):  
Mamatha Hopanna ◽  
Kiranmayi Mangalgiri ◽  
Temitope Ibitoye ◽  
Daniel Ocasio ◽  
Sebastian Snowberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document