scholarly journals The implementation of a digital system for automatic continuous control object, based on a physical model of the object using a thermal Scada Zenon system

Author(s):  
E Voskoboynik

Purpose. Develop a methodology for the implementation of digital control systems for continuous objects on a personal computer, which should provide: bringing the temperature in the chamber to a given value at a given range of air flow in the system; maintaining the temperature in the chamber at a given level at a given range of air flow in the system; visualization and control of the stand of the thermal object; control of fan speed in order to create a disturbing effect; registration of process parameters in the thermal object. The methods. The development is carried out through the phased implementation of a digital control system for a continuous object, implemented on a personal computer. The proposed approach consists of the main stages: a controller is synthesized in a continuous form, which implements the proportional-integral-differential (PID) control law. The simulation of the obtained system is performed in the mathematical package MATLAB. At the next stage on the personal computer the software implementation of the synthesized digital regulator is executed. At the last stage, the hardware elements of the control system were developed and implemented. Findings. The use of this approach in the development of a system of automatic control of a continuous object on the basis of a thermal object allows you to effectively create a complete hardware and software part of digital SAC using Scada system Zenon. This will significantly reduce the duration and cost of commissioning of ACS in production conditions at the actual control facility. Which makes it possible to significantly reduce the duration and cost of commissioning of ACS in production conditions at the actual control facility. The originality. For the first time, a method of creating a control system for thermal objects, based on programmable logic controller with the synthesis of the system in the mathematical package MATLAB. Practical implimintation. The obtained data allow to bring the model as close as possible to the real control system and to perform effective testing of its functioning in non-production conditions.

Author(s):  
Debargha Chakraborty ◽  
Binanda Kishore Mondal ◽  
Souvik Chatterjee ◽  
Sudipta Ghosh

Author(s):  
А. Yu. Izmaylov ◽  
Ya. P. Lobachevskiy ◽  
V. К. Khoroshenkov ◽  
N. Т. Goncharov ◽  
S. E. Lonin ◽  
...  

The introduction of information and digital technologies that support and support all technological processes in the field is an urgent need for the development and implementation of such technology. An organisationally complex and financially intensive project is necessary because of the wide variety of economic entities that differ in the size of production, forms of ownership and socio-economic conditions of production. Automated information control system for mobile units agricultural enterprise provides those-Niko-economic performance, optimum capacity utilization through the use of timely and reliable information on technology. Machine and tractor aggregates are appertained as control objects with variable structure, which is explained by possibility of the system formation from tractor or field machines mobile units with various purposes: tillable, cultivatable, sowing, harvesting and etc. This MTA feature was determined creation of digital control systems of two groups of automatic control and management of the basic energy and operational parameters: tractors, machines and vehicles as part of MTA. To the first group are appertained the automatic control system of tractor motor component loading, motion speed, frictional sliding. To the second group – automatic regulation system of operating depth, seed rate, treatment of liquid combined fertilizers and crop protection agents, filling and driving of various MTA. Novelty of researches consists in methodology of the organization of the centralized control and management of various technological processes at carrying out field works.


Author(s):  
Александр Рытиков ◽  
Aleksandr Rytikov ◽  
Александр Власов ◽  
Aleksandr Vlasov

1995 ◽  
Vol 66 (2) ◽  
pp. 1949-1951 ◽  
Author(s):  
D. C. Quimby ◽  
K. E. Robinson ◽  
D. R. Jander

Sign in / Sign up

Export Citation Format

Share Document