scholarly journals Polymorphism of DNA repair genes in bronchopulmonary pathology in workers of harmful and dangerous industries

2018 ◽  
Vol 81 (1) ◽  
pp. 49-56
Author(s):  
T.A. Andruschenko ◽  
S.V. Honcharov ◽  
L.V. Dolinchuk ◽  
V.Ye. Dosenko

Introduction. Polymorphism of DNA repair genes is actively studied in the formation of the individual sensitivity of the genome to damaging mutagenic effects. Objective of the work. To study the distribution of frequencies of alleles and genotypes of DNA repair genes: XPD (rs13181, rs799793) and ERCC1 (rs11615) in workers of asbestos-cement plants and miners to identify risk markers for bronchopulmonary pathology. Material and methods. The study included workers of asbestos-cement plants and miners (n=214). Real-time polymerase chain reaction was used to determine genotypes of XPD (rs13181, rs799793) and ERCC1 (rs11615) genes. Results. The study determined alleles and genotypes associated with the risk of developing bronchopulmonary pathology: - in the population of workers of asbestos-cement plants: XPD*Asn/Asn (rs799793), (p<0.01; χ2=6.62; OR=2,20; 95 %CI: 1,75–2,77); - in the population of miners: XPD*C (rs13181), (p<0.02; χ2=4,99; OR=1,88; 95 %CI: 1,04–3,40); XPD*CC (rs13181), (p<0,003; χ2=8.61; OR=4,29; 95 %CI: 1,41–13,37). The study also detected allele XPD*A (rs13181), which in the population of miners proved to be a marker of resistance to bronchopulmonary pathology (p<0,02; χ2=4.99; OR=0,53; 95 %CI: 0,29–0,96). Conclusions. The study has identified alleles and genotypes associated with the risk of developing bronchopulmonary pathology in the population of workers in harmful and dangerous production facilities of Ukraine. The study has determined the genotype and allele that can be used as biomarkers of resistance to the pathology of the respiratory system. Key words: molecular-genetic markers, XPD and ERCC1, bronchopulmonary pathology.

2019 ◽  
Vol 72 (5) ◽  
pp. 784-789
Author(s):  
Tetyana A. Andrushchenko ◽  
Sergiy V. Goncharov ◽  
Victor E. Dosenko ◽  
Konstantin E. Ishhejkin

Introduction: The frequency of alleles and genotypes of DNA repair genes in people working due to the influence of industrial aerosols (miners and workers of asbestos-cement plants (n = 215)) was studied. The aim of the work was to identify allelic polymorphisms affecting the formation of resistance or leading to an increased risk of developing bronchopulmonary pathology. Materials and methods: In 90 patients with bronchopulmonary pathology and 125 persons working under the same conditions but without respiratory system diseases, the polymerase chain reaction in real time was determined by the polymorphisms of DNA repair genes: XPD (rs13181, rs799793), ERCC1 (rs11615), XRCC1 ( rs25487) and XRCC3 (rs861539), ATM (rs664677), XRCC7 (rs7003908) and MLH1 (rs1799977). Results: In the course of this study the alleles and genotypes contributing to resistance to the development of respiratory system pathologies were determined: XRCC1•G/A (rs25487) (OR=0.57; 95% CI: 0.32-1.02; P≤0.040; χ²=4.14); MLH1•A (rs1799977) (OR=0.62; 95% CI: 0.40-0.96; P≤0.020; χ²=5.06); MLH1•A/A (rs1799977) (OR=0.43; 95% CI: 0.24-0.79; P≤0.003; χ²=8.73). Also, we established the alleles and genotypes associated with the risk of developing bronchopulmonary pathology: XPD•C/C (rs13181) (OR=2.20, 95% CI: 1.02-4.77; P≤0.020; χ²=4.85); XRCC1•A/A (rs25487) (OR=3.37; 95 % CI: 1.22-9.63; P≤0.008; χ²=6.94); ATM•T/T (rs664677) (OR=2.48; 95% CI: 1.16-5.31; Р≤0.010; χ²=6.61); MLH1•G (rs1799977) (OR=1.61; 95% CI: 1.04-2.49; P≤0.020; χ²=5.06); MLH1•A/G (rs1799977) (OR=2.32; 95% CI: 1.29-4.21; P≤0.002; χ²=9.01). Conclusions: The results indicate the influence of allelic polymorphisms of DNA repair genes on the formation of resistance to the development of bronchopulmonary pathology under the action of industrial aerosols and open up prospects for the development of modern preventive measures.


2020 ◽  
Vol 130 (3) ◽  
pp. 298-305
Author(s):  
Mônica Ghislaine Oliveira Alves ◽  
Natália da Silva Miguel ◽  
Camila Cristina Panisello Ferreira ◽  
Elis Ribeiro Alvarenga ◽  
Bruna Manzanares Tonon ◽  
...  

Author(s):  
Тatyana A. Andrushchenko ◽  
Sergey V. Goncharov ◽  
Viktor Е. Dosenko ◽  
Konstantin E. Ischeikin

Introduction. Presents results of a study of polymorphisms of repair genes of double-strand breaks DNA breaks: XRCC7 (rs7003908), ATM (rs664677), repair «inconsistencies» DNA MLH1 (rs1799977) in miners and workers of asbestos factories professionally due to broncho-pulmonary pathology. T e aim of the study was to research the frequency distribution of genotypes of DNA repair genes: XRCC7 (rs7003908), ATM (rs664677) and MLH1 (rs1799977) in workers of harmful and dangerous industries to identify markers of increased risk of bronchopulmonary pathology. Materials and methods. In 90 people with bronchopulmonary pathology and 124 respondents who worked in the same working conditions but had no history of diseases of the respiratory system, polymerase chain reaction in real time studied the polymorphism of DNA repair genes: XRCC7 (rs7003908), ATM (rs664677) and MLH1 (rs1799977). Results. It was found that the genotypes ATM×T/T and MLH1×A/G are associated with the risk of bronchopulmonary pathology. Genotypes that contribute to resistance to the development of respiratory system pathology were also established: ATM×A/A, ATM× A/T and MLH1×A/A. Conclusion. Genotypes associated with the risk of bronchopulmonary pathology were established: ATM×T/T (р≤0.01, χ2=6.61; OR=2.48; 95%CI: 1.16–5.31) and MLH1×A/G (p≤0.002, χ2=9.00; OR=2.32; 95%CI: 1.29–4.21). Also determined the genotypes that contribute to resistance to the development of diseases of the respiratory system: ATM×a/A (OR=0,83; 95%CI: 0,45–1,54), ATM×A/T (OR=0,67; 95% CI: 0,38–1,21) and MLH1× a/A (р≤0,003, χ2=8,73; OR=0,43; 95% CI: 0,24–0,79).


2011 ◽  
Vol 10 (6) ◽  
pp. 35-39
Author(s):  
S. S. Rakitin ◽  
A. I. Dmitriyeva ◽  
V. V. Novitsky ◽  
I. A. Kuznetsova ◽  
B. A. Avkhimenko

We evaluated the frequency distribution of polymorphic variants in DNA repair genes XRCC1 280, XRCC1 194, XRCC1 399 and XPD 751 gastric cancer patients and healthy controls, leading to new fundamental knowledge and molecular genetic markers of gastric cancer. Statistically significant differences were identified in the two groups for the three excision repair gene XRCC1 280, XRCC1 399 and XPD 751, relative risks were calculated of gastric cancer in carriers of the minor variants of these genes.


2018 ◽  
Author(s):  
I Sepahi ◽  
U Faust ◽  
M Sturm ◽  
K Bosse ◽  
M Kehrer ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 924
Author(s):  
Laurence Blanchard ◽  
Arjan de Groot

Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.


2014 ◽  
Vol 41 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Gustavo Martelli Palomino ◽  
Carmen L. Bassi ◽  
Isabela J. Wastowski ◽  
Danilo J. Xavier ◽  
Yara M. Lucisano-Valim ◽  
...  

Objective.Patients with systemic sclerosis (SSc) exhibit increased toxicity when exposed to genotoxic agents. In our study, we evaluated DNA damage and polymorphic sites in 2 DNA repair genes (XRCC1Arg399Gln andXRCC4Ile401Thr) in patients with SSc.Methods.A total of 177 patients were studied for DNA repair gene polymorphisms. Fifty-six of them were also evaluated for DNA damage in peripheral blood cells using the comet assay.Results.Compared to controls, the patients as a whole or stratified into major clinical variants (limited or diffuse skin involvement), irrespective of the underlying treatment schedule, exhibited increased DNA damage.XRCC1(rs: 25487) andXRCC4(rs: 28360135) allele and genotype frequencies observed in patients with SSc were not significantly different from those observed in controls; however, theXRCC1Arg399Gln allele was associated with increased DNA damage only in healthy controls and theXRCC4Ile401Thr allele was associated with increased DNA damage in both patients and controls. Further, theXRCC1Arg399Gln allele was associated with the presence of antinuclear antibody and anticentromere antibody. No association was observed between these DNA repair gene polymorphic sites and clinical features of patients with SSc.Conclusion.These results corroborate the presence of genomic instability in SSc peripheral blood cells, as evaluated by increased DNA damage, and show that polymorphic sites of theXRCC1andXRCC4DNA repair genes may differentially influence DNA damage and the development of autoantibodies.


Sign in / Sign up

Export Citation Format

Share Document