scholarly journals Genotype and environment interaction of sweetpotato varieties

2019 ◽  
Vol 44 (3) ◽  
pp. 501-512
Author(s):  
S Sultana ◽  
HC Mohanta ◽  
Z Alam ◽  
S Naznin ◽  
S Begum

The article presents results of additive main effect and multiplicative interaction (AMMI) and genotype (G) main effect and genotype by environment (GE) interaction (G × GE) biplot analysis of a multi environmental trial (MET) data of 15 sweetpotato varieties released from Bangladesh Agricultural Research Institute conducted during 2015–2018. The objective of this study was to determine the effects of genotype, environment and their interaction on tuber yield and to identify stable sweetpotato genotypes over the years. The experimental layout was a randomized complete block design with three replications at Gazipur location. Combined analysis of variance (ANOVA) indicated that the main effects due to genotypes, environments and genotype by environment interaction were highly significant. The contribution of genotypes, environments and genotype by environment interaction to the total variation in tuber yield was about 60.16, 10.72 and 12.82%, respectively. The first two principal components obtained by singular value decomposition of the centred data of yield accounted for 100% of the total variability caused by G × GE. Out of these variations, PC1 and PC2 accounted for 71.5% and 28.5% of variability, respectively. The study results identified BARI Mistialu- 5, BARI Mistialu- 14 and BARI Mistialu- 15 as the closest to the “ideal” genotype in terms of yield potential and stability. Varieties ‘BARI Mistialu- 8, BARI Mistialu- 11 and BARI Mistialu- 12’ were also selected as superior genotypes. BARI Mistialu- 3 and BARI Mistialu- 13 was comparatively low yielder but was stable over the environment. Among them BARI Mistialu-12, BARI Mistialu-14 and BARI Mistialu-15 are rich in nutrient content while BARI Mistialu-8 and BARI Mistialu-11 are the best with dry matter content and organoleptic taste. Environments representing in 1st and 3rd year with comparatively short vectors had a low discriminating power and environment in 2nd year was characterized by a high discriminating power. Bangladesh J. Agril. Res. 44(3): 501-512, September 2019

2017 ◽  
Vol 10 (1) ◽  
pp. 249
Author(s):  
E. Otoo ◽  
K. Osei ◽  
J. Adomako ◽  
A. Agyeman ◽  
A. Amele ◽  
...  

To determine the effects of environment and genotypic differences on tuber yield and other related traits, 12 genotypes comprising 9 improved elite clones, two local landraces and 1 improved and released variety were evaluated for tuber yield, response to yam mosaic virus and leaf spot diseases at 16 growing environments. The multi-environment trials were conducted using randomized complete-block design with three blocks for four years in four representative agro-ecological zones (Atebubu, Kintampo, Ejura and Fumesua) in Ghana. The objective was to select high and stable yielding varieties for release as varieties in Ghana. The multi-environment data for the trials collected were subjected to combine analyses of variance using the ANOVA procedure of Statistical Tool for Agricultural Research (STAR) to determine the magnitude of the main effects and interactions. Genotype main effect and genotype by environment interaction effect (GGE) model was used to dissect the genotype by environment interaction (GEI) using the GGE biplot software (GGE biplot, 2007). GGE biplots analysis was applied for visual examination of the GEI pattern in the data set. A highly significant effects (P < 0.001) for Genotype (G), environment (E) and genotype by environment (GEI) interaction were occurred in the data set for highly significant for all the traits studied (P < 0.001), indicating genetic variability between genotypes by changing environments. This indicated changes in ranking order of the genotype performances across the test environments. The partitioning of the GGE effect for tuber yield through in GGE biplot analysis model showed that PC1 and PC2 accounted for 40.47.0% and 19.89.0% of the variation GGE sum of squares respectively for tuber yield, respectively explaining a total of 60.36% variation. Mankrong Pona was the most stable and high yielding (closest to the ideal genotype) followed by TDr95/19177. Genotypes TDr00/02472, TDr00/00539 and TDr98/00933 are desirable genotypes for further assessment on culinary characteristics and end-user assessment for release as varieties. All the four locations used for the study were highly relevant for research and development of yams. Ejura and Fumesua were the most discriminating and most representative for YMV respectively. In terms of yield, Kintampo environment was the most discriminating and Fumesua and Atebubu were the closest to ideal environment for evaluating yield.


2021 ◽  
Vol 53 (4) ◽  
pp. 609-619
Author(s):  
B. Tembo

Understanding genotype by environment interaction (GEI) is important for crop improvement because it aids in the recommendation of cultivars and the identification of appropriate production environments. The objective of this study was to determine the magnitude of GEI for the grain yield of wheat grown under rain-fed conditions in Zambia by using the additive main effects and multiplicative interaction (AMMI) model. The study was conducted in 2015/16 at Mutanda Research Station, Mt. Makulu Research Station and Golden Valley Agricultural Research Trust (GART) in Chibombo. During2016/17, the experiment was performed at Mpongwe, Mt. Makulu Research Station and GART Chibombo, Zambia. Fifty-five rain-fed wheat genotypes were evaluated for grain yield in a 5 × 11 alpha lattice design with two replications. Results revealed the presence of significant variation in yield across genotypes, environments, and GEI indicating the differential performance of genotypes across environments. The variance due to the effect of environments was higher than the variances due to genotypes and GEI. The variances ascribed to environments, genotypes, and GEI accounted for 45.79%, 12.96%, and 22.56% of the total variation, respectively. These results indicated that in rain-fed wheat genotypes under study, grain yield was more controlled by the environment than by genetics. AMMI biplot analysis demonstrated that E2 was the main contributor to the GEI given that it was located farthest from the origin. Furthermore, E2 was unstable yet recorded the highest yield. Genotype G47 contributed highly to the GEI sum of squares considering that it was also located far from the origin. Genotypes G12 and G18 were relatively stable because they were situated close to the origin. Their position indicated that they had minimal interaction with the environment. Genotype 47 was the highest-yielding genotype but was unstable, whereas G34 was the lowest-yielding genotype and was unstable.


2011 ◽  
Vol 46 (2) ◽  
pp. 174-181 ◽  
Author(s):  
Ana Marjanović-Jeromela ◽  
Nevena Nagl ◽  
Jelica Gvozdanović-Varga ◽  
Nikola Hristov ◽  
Ankica Kondić-Špika ◽  
...  

The objective of this study was to assess genotype by environment interaction for seed yield per plant in rapeseed cultivars grown in Northern Serbia by the AMMI (additive main effects and multiplicative interaction) model. The study comprised 19 rapeseed genotypes, analyzed in seven years through field trials arranged in a randomized complete block design, with three replicates. Seed yield per plant of the tested cultivars varied from 1.82 to 19.47 g throughout the seven seasons, with an average of 7.41 g. In the variance analysis, 72.49% of the total yield variation was explained by environment, 7.71% by differences between genotypes, and 19.09% by genotype by environment interaction. On the biplot, cultivars with high yield genetic potential had positive correlation with the seasons with optimal growing conditions, while the cultivars with lower yield potential were correlated to the years with unfavorable conditions. Seed yield per plant is highly influenced by environmental factors, which indicates the adaptability of specific genotypes to specific seasons.


Zuriat ◽  
2015 ◽  
Vol 19 (1) ◽  
Author(s):  
Darman M. Arsyad ◽  
, Purwantoro

Availability of adapted cultivars is needed for the development of soybean cultivation in upland soil in Lampung, Sumatra. Twelve advanced soybean breeding lines and two check varieties (Tanggamus and Wilis) were tested on upland soils of Lampung Province. The trials were conducted in the District of Tulangbawang, Central Lampung, East Lampung and South Lampung during the late rainy season of 2003/2004. Two sites were selected per district for a total of eight sites for the four districts. A split plot design with three replications was used within each location. Plot size was 2.4 m x 4.5 m, plant spacing of 40 cm between rows and 15 cm within a row, and two plants per hill. The mainplot was fertilizer: A= Low inputs (22.5 kg N, 27 kg P2O5, and 40 kg K2O per ha), and B=Medium inputs (22.5 kg N, 36 kg P2O5, 53 kg K2O and 0.56 t CaO per ha). The fertilizers were applied before planting. The subplots were 12 soybean breeding lines together with two check soybean varieties. Results showed that soybean yields were affected significantly by locations, fertilizers, breeding lines, location x fertilizer and location x breeding line interactions. Plant height was affected siginificantly by locations, fertilizers, breeding lines and location x breeding interaction. Pods per plant  were affected by locations, fertilizers, location x fertilizer and location x breeding line interactions. All breeding lines and varieties were responsive to changing environments. Based on the smallest Pi parameter (the distance mean square between the cultivar’s response and the maximum response averaged over all locations), and the highest frequency of rank, three breeding lines, namely W3465-27-2 (released in 2004 as cv. Ratai), cv. Tanggamus and D3578- 3/K3911-66-3 were identified as wide adaptability genotypes with the yield potential of more than 2.4 t/ha with an average of 1.6 t/ha.


2003 ◽  
Vol 40 (1) ◽  
pp. 99-107 ◽  
Author(s):  
RODOMIRO ORTIZ ◽  
ALI M. GOLMIRZAIE

The aim of this work was to determine the importance of the genotype-by-environment interaction in true potato seed breeding. In order to establish the importance of this type of interaction, experiments were sited across three Peruvian locations, San Ramon (warm mid-altitude slopes), Huancayo (cool Andean highlands), and La Molina (coastal desert). The genotype by environment interaction significantly affected tuber yield in all breeding materials (4x-4x from random or selected parents, and 4x-2x crosses). For example, the 10 most outstanding 4x-2x crosses for tuber yield were different when tested in warm and cool locations. Similarly, two clones derived from 4x-4x crosses were among the best 15 hybrids assessed in the two lower altitude locations. These two offspring provide examples of crossover genotype-by-environment interaction for tuber set, non-cross order genotype-by-environment interaction for tuber yield and lack of genotype-by-environment interaction for days to flowering. Because top yielding true potato seed offspring for each location were locally adapted, cultivars or advanced selections from the target area should be the parental sources of true potato seed offspring.


Sign in / Sign up

Export Citation Format

Share Document