scholarly journals Air Entrainment through Free Surface: A Study of Scale Effects

1970 ◽  
Vol 41 (3) ◽  
pp. 207-218
Author(s):  
Ashabul Hoque

This study investigates air entrainment through free surface both in vertical circular plunging jets and plunging breakers. Three scale modesldata of void fraction for identical froude numbers measured by Hoque and Chanson et al. have been used to investigate the scale effects. The results highlight the significant scale effects when the weber number is less than 1000 in vertical circular plunging jets, whereas it may be significant in the laboratory when the wave height is less than 0.30 m. Bangladesh J. Sci. Ind. Res. 41(3-4), 207-218, 2006

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1773
Author(s):  
José M. Carrillo ◽  
Patricio R. Ortega ◽  
Luis G. Castillo ◽  
Juan T. García

This experimental study presents an analysis of the air–water flow in rectangular free-falling jets. The measurements were obtained downstream of a 1.05 m wide sharp-crested weir. The properties of the air–water flow were registered in several cross-sections of the nappe. A conductivity phase detection probe was employed, sampling at 20 kHz. Three different specific flows were considered, with energy head over the crest of 0.080, 0.109 and 0.131 m to avoid scale effects. To analyze the flow properties, air–water parameters during the fall, such as the phase change spatial distribution, air–water phase change of frequency, Sauter mean diameter, bubble chord length, turbulent intensities and spectral analyses, were studied. The jet thickness behaviors (inner jet core and free surface) were also analyzed in the falling jet. The jet thickness related to a void fraction of 90% seems to be similar to the theoretical proposal obtained by Castillo et al. (2015), while the jet thickness related to a void fraction of 10% seems to be similar to the jet thickness due to gravitational effects. The results show relative differences in the behavior of the upper and lower sides of the nappe. The experimental data allow us to improve on and complement previous research.


Author(s):  
Athanassios A. Dimas

The effect of surface tension on the evolution of weak spilling breakers is studied by performing large-wave simulations (LWS) of the free-surface flow developing by the interaction of a gravity free-surface wave and a surface shear-layer current. The flow models the evolution of gravity waves under the influence of wind shear. The surface tension modifies the dynamic free-surface condition and its effect depends on the dimensionless Weber number. The Euler equations are filtered according to the LWS formulation and solved numerically by a spectral method and a fractional-time-step scheme. The results indicate a stronger surface tension effect with decreasing Weber number values and increasing initial wave height. Specifically, decreasing the Weber number alters the size and shape of the characteristic bulge of spilling breakers and the toe position resulting in sharper slopes and angles of the free surface profile. The spiller wave height is reduced with decreasing Weber number.


Author(s):  
Hubert Chanson ◽  
Shin-Ichi Aoki ◽  
Ashabul Hoque

Air bubble entrainment at plunging jet takes place when the jet impact velocity exceeds a critical velocity function of the inflow conditions. This study investigates scale effects affecting air entrainment and bubble dispersion at vertical circular plunging jets. Three scale models were used and detailed air-water measurements were performed systematically for identical Froude numbers. The results highlight significant scale effects when We1 < 1E+3 or V1/ur < 10. Bubble chord times were also measured and presented in terms of pseudo-bubble chord length which was found to overestimate real bubble chords by 10 to 30%. The data show pseudo-bubble chord sizes ranging from less than 0.5 mm to more than 10 mm. The average pseudo-chord sizes were between 5 and 7 mm.


2021 ◽  
Vol 33 (11) ◽  
pp. 112114
Author(s):  
Santosh Kumar Panda ◽  
Basanta Kumar Rana ◽  
Parmod Kumar
Keyword(s):  

Author(s):  
Anne M. Fullerton ◽  
Thomas C. Fu ◽  
Edward S. Ammeen

Impact loads from waves on vessels and coastal structures are highly complex and may involve wave breaking, making these changes difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and non-breaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident non-breaking and breaking waves on one face of a cube. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. A limited number of runs were made at low forward speeds, ranging from about 0.5 to 2 knots (0.26 to 1.03 m/s). The measurement cube was outfitted with a removable instrumented plate measuring 1 ft2 (0.09 m2), and the wave heights tested ranged from 8–14 inches (20.3 to 35.6 cm). The instrumented plate had 9 slam panels of varying sizes made from polyvinyl chloride (PVC) and 11 pressure gages; this data was collected at 5 kHz to capture the dynamic response of the gages and panels and fully resolve the shapes of the impacts. A Kistler gage was used to measure the total force averaged over the cube face. A bottom mounted acoustic Doppler current profiler (ADCP) was used to obtain measurements of velocity through the water column to provide incoming velocity boundary conditions. A Light Detecting and Ranging (LiDAR) system was also used above the basin to obtain a surface mapping of the free surface over a distance of approximately 15 feet (4.6 m). Additional point measurements of the free surface were made using acoustic distance sensors. Standard and high-speed video cameras were used to capture a qualitative assessment of the impacts. Impact loads on the plate tend to increase with wave height, as well as with plate inclination toward incoming waves. Further trends of the pressures and forces with wave characteristics, cube orientation, draft and face angle are investigated and presented in this paper, and are also compared with previous test results.


2020 ◽  
Vol 98 (11) ◽  
pp. 981-992
Author(s):  
Ying Zhang ◽  
Qiang Liu ◽  
Wenbin Li ◽  
Xiaolong Lian ◽  
Jinglun Li ◽  
...  

The rising process of a bubble occurs in several natural and industrial apparatuses. This process is computationally studied using the front tracking method for a moving interface whose surface properties are solved in terms of an immersed-boundary method. The results show that the free interface does not influence the bubble before the centroid velocity of the bubble reaches the terminal velocity, which reaches a stable value or fluctuates at it, with the distance h (between the centroid of the bubble and the free surface) reaching a certain value. When the Reynolds number increases, the time to reach terminal velocity will decrease, and the influence of the viscous factor on the terminal velocity is also weakened. The dramatic interaction between a bubble and free surface is beneficial to accelerate film draining out. It is also shown that the shape of the bubble gradually becomes an ellipse as the Weber number (We) decreases, and it is beneficial to reduce the resistance of the bubble. The free surface could accelerate the bubble breaking at high We values.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1758
Author(s):  
Juan Macián-Pérez ◽  
Francisco Vallés-Morán ◽  
Santiago Sánchez-Gómez ◽  
Marco De-Rossi-Estrada ◽  
Rafael García-Bartual

The study of the hydraulic jump developed in stilling basins is complex to a high degree due to the intense velocity and pressure fluctuations and the significant air entrainment. It is this complexity, bound to the practical interest in stilling basins for energy dissipation purposes, which brings the importance of physical modeling into the spotlight. However, despite the importance of stilling basins in engineering, bibliographic studies have traditionally focused on the classical hydraulic jump. Therefore, the objective of this research was to study the characteristics of the hydraulic jump in a typified USBR II stilling basin, through a physical model. The free surface profile and the velocity distribution of the hydraulic jump developed within this structure were analyzed in the model. To this end, an experimental campaign was carried out, assessing the performance of both, innovative techniques such as the time-of-flight camera and traditional instrumentation like the Pitot tube. The results showed a satisfactory representation of the free surface profile and the velocity distribution, despite some discussed limitations. Furthermore, the instrumentation employed revealed the important influence of the energy dissipation devices on the flow properties. In particular, relevant differences were found for the hydraulic jump shape and the maximum velocity positions within the measured vertical profiles, when compared to classical hydraulic jumps.


2017 ◽  
Vol 813 ◽  
pp. 1007-1044 ◽  
Author(s):  
Matthieu A. André ◽  
Philippe M. Bardet

Two air entrainment mechanisms driven by vortex instability are reported in the unstable relaxation of a horizontal shear layer below a free surface. This flow is experimentally investigated by means of planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) coupled with surface profilometry. PLIF identifies counter-rotating vortex pairs (CRVP) emanating from the surface following the growth of high steepness two-dimensional millimetre-size waves for Reynolds and Weber numbers based on the momentum thickness of 177 to 222 and 7.59 to 13.9, respectively. High spatio-temporal resolution PIV reveals the role of surface-generated vorticity and flow separation in the highly curved trough of the waves on the injection of a CRVP. Air bubbles are entrapped in the wake of these CRVPs at Reynolds number above 190. PIV data and spanwise PLIF images show two initiation mechanisms: primary vortex instability modulating the spanwise location where the flow separates, resulting in the pinch off of an air ligament, and secondary vortex instability turning a CRVP into$\unicode[STIX]{x1D6FA}$-shaped loops pulling the surface down. Instability wavelengths agree with linear stability analysis, and models for these new air entrainment mechanisms are proposed.


Sign in / Sign up

Export Citation Format

Share Document