scholarly journals Experimental Characterization of Air Entrainment in Rectangular Free Falling Jets

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1773
Author(s):  
José M. Carrillo ◽  
Patricio R. Ortega ◽  
Luis G. Castillo ◽  
Juan T. García

This experimental study presents an analysis of the air–water flow in rectangular free-falling jets. The measurements were obtained downstream of a 1.05 m wide sharp-crested weir. The properties of the air–water flow were registered in several cross-sections of the nappe. A conductivity phase detection probe was employed, sampling at 20 kHz. Three different specific flows were considered, with energy head over the crest of 0.080, 0.109 and 0.131 m to avoid scale effects. To analyze the flow properties, air–water parameters during the fall, such as the phase change spatial distribution, air–water phase change of frequency, Sauter mean diameter, bubble chord length, turbulent intensities and spectral analyses, were studied. The jet thickness behaviors (inner jet core and free surface) were also analyzed in the falling jet. The jet thickness related to a void fraction of 90% seems to be similar to the theoretical proposal obtained by Castillo et al. (2015), while the jet thickness related to a void fraction of 10% seems to be similar to the jet thickness due to gravitational effects. The results show relative differences in the behavior of the upper and lower sides of the nappe. The experimental data allow us to improve on and complement previous research.

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1593
Author(s):  
José M. Carrillo ◽  
Patricio R. Ortega ◽  
Luis G. Castillo ◽  
Juan T. García

This study analyzes the air–water flow properties in overflow nappe jets. Data were measured in several cross-sections of rectangular free-falling jets downstream of a sharp-crested weir, with a maximum fall distance of 2.0 m. The flow properties were obtained using a conductivity phase-detection probe. Furthermore, a back-flushing Pitot-Prandtl probe was used in order to obtain the velocity profiles. Five specific flows rates were analyzed, from 0.024 to 0.096 m3/s/m. The measurements of the air–water flow allowed us to characterize the increment of the air entrainment during the fall, affecting the flow characteristic distributions, reducing the non-aerated water inner core, and increasing the lateral spread, thereby leading to changes in the jet thickness. The results showed slight differences between the upper and lower nappe trajectories. The experimental data of the jet thickness related to a local void fraction of 50% seemed to be similar to the jet thickness due only to gravitational effects until the break-up length was reached. The amount of energy tended to remain constant until the falling distance was over 15 times greater than the total energy head over the weir crest, a distance at which the entrained air affected the entire cross-section, and the non-aerated core tended to disappear. The new experiments related with air–water properties in free-falling jets allow us to improve the current knowledge of turbulent rectangular jets.


1970 ◽  
Vol 41 (3) ◽  
pp. 207-218
Author(s):  
Ashabul Hoque

This study investigates air entrainment through free surface both in vertical circular plunging jets and plunging breakers. Three scale modesldata of void fraction for identical froude numbers measured by Hoque and Chanson et al. have been used to investigate the scale effects. The results highlight the significant scale effects when the weber number is less than 1000 in vertical circular plunging jets, whereas it may be significant in the laboratory when the wave height is less than 0.30 m. Bangladesh J. Sci. Ind. Res. 41(3-4), 207-218, 2006


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Guansheng Chen ◽  
Nanshuo Li ◽  
Huanhuan Xiang ◽  
Fan Li

It is well known that attaching fins on the tubes surfaces can enhance the heat transfer into and out from the phase change materials (PCMs). This paper presents the results of an experimental study on the thermal characteristics of finned coil latent heat storage unit (LHSU) using paraffin as the phase change material (PCM). The paraffin LHSU is a rectangular cube consists of continuous horizontal multibended tubes attached vertical fins at the pitches of 2.5, 5.0, and 7.5 mm that creates the heat transfer surface. The shell side along with the space around the tubes and fins is filled with the material RT54 allocated to store energy of water, which flows inside the tubes as heat transfer fluid (HTF). The measurement is carried out under four different water flow rates: 1.01, 1.30, 1.50, and 1.70 L/min in the charging and discharging process, respectively. The temperature of paraffin and water, charging and discharging wattage, and heat transfer coefficient are plotted in relation to the working time and water flow rate.


2021 ◽  
Vol 655 (1) ◽  
pp. 012024
Author(s):  
O.H. Ajesi ◽  
M.B. Latif ◽  
S.T. Gbenu ◽  
C. A. Onumejor ◽  
M. K. Fasasi ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 396-397
Author(s):  
Heiner Martin ◽  
Josephine Wittmüß ◽  
Thomas Mittlmeier ◽  
Niels Grabow

AbstractThe investigation of matching of endoprosthesis tibial components to the bone cross section is of interest for the manufacturer as well as for the surgeon. On the one hand, a systemic design of the prosthesis and the assortment is possible, on the other hand, a better matching implantation is enabled on the basis of experience of this study. CT sections were segmented manually using a CAD system and fitted by spline functions, then superseded with cross sections of the tibial component of a modified Hintermann H3 prosthesis. The principal moments of inertia, the direction of the principal axes and the area of the section were evaluated. Based on the relative differences of the principal moments of inertia, recommendations for application of the different prosthesis size and its selection with the surgery can be made.


2014 ◽  
Vol 20 (3) ◽  
Author(s):  
Adelė VAIDELIENĖ ◽  
Arvaidas GALDIKAS ◽  
Paulius TERVYDIS

Author(s):  
C.E Blenkinsopp ◽  
J.R Chaplin

This paper describes detailed measurements and analysis of the time-varying distribution of void fractions in three different breaking waves under laboratory conditions. The measurements were made with highly sensitive optical fibre phase detection probes and document the rapid spatial and temporal evolutions of both the bubble plume generated beneath the free surface and the splashes above. Integral properties of the measured void fraction fields reveal a remarkable degree of similarity between characteristics of the two-phase flow in different breaker types as they evolve with time. Depending on the breaker type, the energy expended in entraining air and generating splash accounts for a minimum of between 6.5 and 14% of the total energy dissipated during wave breaking.


2004 ◽  
Vol 31 (5) ◽  
pp. 880-891 ◽  
Author(s):  
Mehmet Ali Kökpinar

High-speed two-phase flows over a 30° stepped flume were experimentally investigated using macro-roughness elements. The roughness elements included combinations of steps and horizontal strips. Local values of air concentration, air bubble frequency, and mean chord lengths were measured by a fiber-optical instrumentation system in the air–water flow region. The range of unit discharge of water was varied from 0.06 to 0.20 m2/s. Three step configurations were studied: (i) without macro-roughness elements, (ii) with macro-roughness elements on each step, and (iii) with macro-roughness elements on each second step (AMR configuration). The results were compared in terms of onset flow conditions and internal air–water flow parameters such as local air concentration, mean air bubble chord length distribution, and air bubble frequency in the skimming flow regime. It was observed that the AMR configuration produced the maximum free-surface aeration among the other configurations. This alternative step geometry has potential for less cavitation damage than conventional step geometry because of the greater air entrainment.Key words: stepped chute, air-entrainment, air-water flow properties, macro-roughness elements, skimming flow.


Sign in / Sign up

Export Citation Format

Share Document