scholarly journals Adsorptive Removal of Reactive Black 5 from Aqueous Solution using Chitin Prepared from Shrimp Shells

2012 ◽  
Vol 15 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Hosne Ara Begum ◽  
Ajoy Kanti Mondal ◽  
Tanvir Muslim

The utilization of chitin as adsorbent for the removal of Reactive Black 5 (RB5) from aqueous solution was investigated. Chitin was prepared from shrimp shells using conventional method. Prepared chitin was characterized by FT-IR spectral and thermogravimetric analysis. Batch adsorption experiments were carried out as a function of contact time, initial concentration of RB5 solution, temperature and pH of the solution. The amount of adsorption of RB5 from aqueous solution on chitin increased with the increase of initial concentration of RB5 solution and temperature of the solution. The equilibrium adsorption data were fitted to the Langmuir and Freunlich isotherms. The best result was achieved with Langmuir isotherm model. The thermodynamics of reactive dye by chitin indicated its spontaneous and endothermic nature. The kinetic of the sorption was analysed using the pseudo firstorder and second-order kinetic models. The data showed that the pseudo second-order equation was the more appropriate. The experimental data showed that the adsorption capacity was gradually decreased with the increment of pH. DOI: http://dx.doi.org/10.3329/bpj.v15i2.12580 Bangladesh Pharmaceutical Journal 15(2): 145-152, 2012

2018 ◽  
Vol 18 (2) ◽  
pp. 265 ◽  
Author(s):  
Behzad Shamsi Zadeh ◽  
Hossein Esmaeili ◽  
Rauf Foroutan

Heavy metals are soluble in the environment and can be dangerous for many species. So, removal of heavy metals from the water and wastewater is an important process. In this study, an adsorbent made of eggshell powder was employed to remove cadmium ions from aqueous solution. A number of parameters were studied including pH of the aqueous solution, adsorbent dosage, contact time, the initial concentration of cadmium ion and mixing rate. The best efficiency for the removal of Cd(II) was obtained 96% using this adsorbent. The optimal parameters were ambient temperature of 30 °C, mixing rate of 200 rpm, pH of 9, an adsorbent dosage of 5 g/L and initial concentration of cadmium was 200 ppm. In order to study the kinetics of adsorbent, the pseudo-first-order and pseudo-second-order kinetic models and intra-particle diffusion model were applied. According to the pre-determined correlation coefficients (R2), the pseudo-second-order kinetic model showed a better correlation between the kinetic behaviors of the adsorbent. Furthermore, to study the equilibrium behavior of adsorbent, Langmuir and Freundlich models used and both models showed high efficiency in isotherm behavior of the adsorbent. So, this adsorbent can be used as a natural and cheap adsorbent.


2020 ◽  
Vol 9 (1) ◽  
pp. 95-104

The impact of sodium hydroxide pretreatment of maize husk on its lead ion removal efficiency was investigated. Pretreatment of maize husk with this alkali increased its surface area and porosity from 528.74 m2/g and 0.477 cm3/g to 721.54 m2/g and 0.642 cm3/g, respectively. Batch adsorption studies were carried out to evaluate the effects of initial pH, adsorbent dose, initial lead ion concentration, initial solution temperature, and contact time on the adsorption process. The maximum removal efficiency of maize husk at pH 5 and adsorbent dose 2 g/L was 62.85 %, which increased to 82.84 % after pretreatment and was attained in 15 min. The adsorption data for the natural and pretreated maize husk were best fitted in the Freundlich isotherm model, with their adsorption intensity (n) having values >1, which indicated that lead ion adsorption onto the adsorbent types was a favorable physical process. The adsorption of lead ions onto the adsorbents followed the pseudo-first-order kinetic model. The experimental adsorption capacities of maize husk (31.43 mg/g) and its modified form (41.22 mg/g) were very close to those obtained from this model (31.03 mg/g and 40.65 mg/g respectively). The ΔH and ΔG values of the adsorption process showed that the adsorption of lead ions by both adsorbents was an endothermic process and occurred spontaneously. Alkali pretreated maize husk can therefore be used as a cheap adsorbent to remove lead ions from aqueous solution.


2018 ◽  
Vol 783 ◽  
pp. 109-114
Author(s):  
Nor Salmi Abdullah ◽  
Syazrin Syima Sharifuddin ◽  
Mohd. Hazwan Hussin

The adsorption ability of powdered activated carbons (PAC) derived from palm kernel shell (PKS) was investigated. PAC was prepared by chemical activation method using ZnCl2as an activating agents. The adsorption studies of Hg(II) was carried out under control condition with constant pH, solution temperature (30 °C), treatment time (90 min) and absorbent dosage (2.0 g L-1). It was revealed that PAC efficiently removed as much as 10 mg L-1of Hg(II) with the percentage of removal up to 97.7 %. Both Langmuir and Freundlich adsorption isotherms were used to explain the adsorption behavior. Freundlich model was found to be fitted well and favored multilayer adsorption. The kinetics data were fitted with pseudo-first order and pseudo-second order, and it was found to obeys the pseudo-second order kinetic order. Recent finding suggest that PKS has the potential to be a promising precursor for the production of activated carbon with the excellent adsorption capacity to remove Hg(II) from aqueous solution.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Seraj Anwar Ansari ◽  
Fauzia Khan ◽  
Anees Ahmad

Cauliflower leaf powder (CLP), a biosorbent prepared from seasonal agricultural crop waste material, has been employed as a prospective adsorbent for the removal of a basic dye, methylene blue (MB) from aqueous solution by the batch adsorption method under varying conditions, namely, initial dye concentration, adsorbent dose, solution pH, and temperature. Characterization of the material by FTIR and SEM indicates the presence of functional groups and rough coarse surface suitable for the adsorption of methylene blue over it. Efforts were made to fit the isotherm data using Langmuir, Freundlich, and Temkin equation. The experimental data were best described by Freundlich isotherm model, with an adsorption capacity of 149.22 mg/g at room temperature. To evaluate the rate of methylene blue adsorption onto CLP, pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were employed. The experimental data were best described by the pseudo-second-order kinetic model. Evaluation of thermodynamic parameters such as changes in enthalpy, entropy, and Gibbs’ free energy showed the feasible, spontaneous, and exothermic nature of the adsorption process. On the basis of experimental results obtained, it may be concluded that the CLP prepared from agricultural waste has considerable potential as low-cost adsorbent in wastewater treatment for the removal of basic dye, MB.


2015 ◽  
Vol 11 (9) ◽  
pp. 3876-3887
Author(s):  
Prakash Bhila Wagh ◽  
V.S Shrivastava ◽  
V.S Shrivastava

 The kinetics and equilibrium study of crystal violate dye adsorption on mixture of activated carbon (PWCAC) and (CSAC) was studied. The use of low cost ecofriendly adsorbent has been investigated as an ideal alternative to the current expensive methods of removing of dye from aqueous solution. This study was done by batch adsorption techniques. The quantitative adsorption kinetic and equilibrium parameter for crystal violate dye were studied using uv-visible adsorption spectroscopy. The effect of initial dye concentration, pH,adsorbent dose, temperature, particle size were determined to find the optimal condition for adsorption. The percentage removal of dye was found to be most effective at pH10and contact time 120 min and at an adsorbent dose 4 g/L of dye. The study indicates that’s, the percentage removal of dye increases with increasing initial dye concentration, adsorption dose and contact time and attains equilibrium at optimum conditions.The equilibrium study of adsorption of crystal violate dye on to mixture of activated carbon was investigated using pseudo first order and pseudo second order kinetic models. The adsorption kinetics was found to follow pseudo second order kinetic model. The equilibrium adsorption data of crystal violate dye on PWCAC and CSAC mixture was analyzed by Langmuir and Freundlich adsorption model. The results show that the Langmuir model provides the best correlation.


Author(s):  
Buhari Magaji ◽  
Aisha U. Maigari ◽  
Usman A. Abubakar ◽  
Mukhtar M. Sani ◽  
Amina U. Maigari

This study was aimed at using Balanite aegyptiaca seed coats activated carbon (BAAC) as a potential adsorbent to remove safranin dye from aqueous solution. BAAC was prepared from Balanite aegyptiaca seed coats using a one-step procedure with 67.27% yield, 3.23% ash content, 695 m2/g surface area and 203 mg/g iodine number. The FTIR spectroscopy revealed O-H, N-H, C-H, C=C, C-O-H stretching vibrations. The influences of agitation time, initial dye concentration and adsorbent dose were studied in batch experiments at room temperature. The adsorptions were rapid at the first 15 minutes of agitation, with the uptake of 2.746 mg/kg. The adsorption equilibrium was achieved at 90 minutes of agitation. Kinetic studies showed good correlation coefficient for both pseudo-first order and pseudo-second-order kinetics model but fitted well into pseudo-second order kinetic model. The adsorption data fitted well into Langmuir isotherm with correlation coefficient (R2) very close to unity and Langmuir maximum adsorption constant, qm  1.00. Thus, the fitting into Langmuir indicates monolayer coverage on the adsorbents. The results showed that BAAC has the potential to be applied as alternative low-cost adsorbents in the remediation of dye contamination in wastewater.


2013 ◽  
Vol 16 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Nargish Jahan Ara ◽  
Md Abu Hasan ◽  
Mohammad Arifur Rahman ◽  
Md Abdus Salam ◽  
Abdus Salam ◽  
...  

Activated carbon prepared from sawdust is endeavored as adsorbent for the removal of reactive dye, namely Remazol Red (RR) from aqueous media. The adsorption of RR has been studied onto activated sawdust at various particle size, adsorbent dose, temperature and pH values. The adsorptions of the above mentioned dye were designed for the Langmuir and Freundlich Isotherms. Pseudo first and second order kinetic models were used to calculate the amount adsorbed at equilibrium (q<sub>e</sub>). The calculated values of qe for pseudo-second order equation were found to be in good agreement with those of experimental values. The monolayer capacity (qm) for treated sawdust (8.00 mg g–1) is greater than commercial charcoal (0.074 mg g–1). It is established that treated sawdust has been used as a better adsorbent for the removal of RR as compared to commercial charcoal. This process may eventually be used to get industrial waste free purified water. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14501 Bangladesh Pharmaceutical Journal 16(1): 93-98, 2013


2015 ◽  
Vol 49 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Md Pabel Kabir ◽  
Md Manuarul Islam ◽  
Shah Md Masum ◽  
Md Mufazzal Hossain

Chitosan has been used as an adsorbent to remove remazol red RR from aqueous solution by adsorption. The experiments have been conducted to study the effects of initial concentration of adsorbate, temperature, pH and particle size on dye adsorption. The kinetic data obtained have been examined using pseudo first- and pseudo second-order equations. The equilibrium adsorption data have been studied by using Freundlich and Langmuir models. The best results have been achieved with the pseudo second-order kinetic model and with the Langmuir equilibrium isotherm model. The equilibrium adsorption capacity (qe) of chitosan increases with increasing the initial concentration of dye, temperature and with decreasing particle size. However, the highest adsorption capacity has been found at a pH about 5.4. The maximum monolayer adsorption capacity, qe = 155.72 mg/g has been found at the optimum conditions. The activation energy (Ea) of sorption kinetics is about 9.25 kJ/mol. Thermodynamic parameters such as change in free energy (?G), enthalpy (?H) and entropy (?S) have also been evaluated. DOI: http://dx.doi.org/10.3329/bjsir.v49i2.22005 Bangladesh J. Sci. Ind. Res. 49(2), 111-118, 2014


2015 ◽  
Vol 11 (9) ◽  
pp. 3876-3887
Author(s):  
Prakash Bhila Wagh ◽  
V.S Shrivastava ◽  
V.S Shrivastava

 The kinetics and equilibrium study of crystal violate dye adsorption on mixture of activated carbon (PWCAC) and (CSAC) was studied. The use of low cost ecofriendly adsorbent has been investigated as an ideal alternative to the current expensive methods of removing of dye from aqueous solution. This study was done by batch adsorption techniques. The quantitative adsorption kinetic and equilibrium parameter for crystal violate dye were studied using uv-visible adsorption spectroscopy. The effect of initial dye concentration, pH,adsorbent dose, temperature, particle size were determined to find the optimal condition for adsorption. The percentage removal of dye was found to be most effective at pH10and contact time 120 min and at an adsorbent dose 4 g/L of dye. The study indicates that’s, the percentage removal of dye increases with increasing initial dye concentration, adsorption dose and contact time and attains equilibrium at optimum conditions.The equilibrium study of adsorption of crystal violate dye on to mixture of activated carbon was investigated using pseudo first order and pseudo second order kinetic models. The adsorption kinetics was found to follow pseudo second order kinetic model. The equilibrium adsorption data of crystal violate dye on PWCAC and CSAC mixture was analyzed by Langmuir and Freundlich adsorption model. The results show that the Langmuir model provides the best correlation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Emel Simla Önal ◽  
Tolga Yatkın ◽  
Tural Aslanov ◽  
Memduha Ergüt ◽  
Ayla Özer

In this study, iron nanoparticles (FeNPs) were synthesized via a green method using loquat (Eriobotrya japonica) leaves aqueous extract as a renewable reducing agent. The synthesized FeNPs were characterized by DLS, XRD, FT-IR, SEM/EDX, and TEM analysis, and then, they were used as an adsorbent for Cr(VI) removal from aqueous solutions. Batch adsorption experiments were carried out to investigate the optimum adsorption parameters such as the initial pH of the solution, temperature, initial Cr(VI) concentration, and adsorbent concentration. The optimum adsorption conditions were determined as initial pH 3.0, temperature 45°C, and adsorbent concentration 1 g/L. Also, a linear increase was observed in adsorbed Cr(VI) amounts with the increasing initial Cr(VI) concentrations. The biosynthesized FeNPs showed the high removal levels higher than 90% for Cr(VI) adsorption at a wide range of initial Cr(VI) concentrations (50–500 mg/L). The experimental equilibrium data were modelled with Langmuir and Freundlich isotherm models, and it was found that experimental equilibrium data could be well described by the Langmuir isotherm model. The maximum monolayer coverage capacity of FeNPs for Cr(VI) adsorption was found to be 312.5 mg/g. The pseudo-first-order and the pseudo-second-order kinetic models were applied to the experimental adsorption data, and it was concluded that the data were defined as the best agreement with the pseudo-second-order kinetic model. Weber–Morris model was used to investigate the effect of mass transfer on the adsorption of Cr(VI) onto FeNPs; it was observed that both the film (boundary layer) and intraparticle diffusion affected the studied adsorption process. The thermodynamic studies suggested that Cr(VI) adsorption onto FeNPs was endothermic and nonspontaneous, and the positive ΔS value indicated increased disorder at the solid-solution interface during the adsorption.


Sign in / Sign up

Export Citation Format

Share Document