scholarly journals Measurement and Comparison of Control Rod Worth of BTRR using Inhour Equation and Period reactivity conversion table

2017 ◽  
Vol 41 (1) ◽  
pp. 95-103
Author(s):  
Md Iqbal Hosan ◽  
MAM Soner ◽  
Md Fazlul Huq ◽  
Khorshed Ahmad Kabir

In a nuclear reactor, control rod is a very essential part and plays the elementary role in the reactor control during reactor start up, normal power operation, experimental research and shutdown. To perform all these operations safely, knowledge of differential and integral worth of the control rod is mandatory. In this study, the differential and integral worth curve of all control rods of BAEC TRIGA Research Reactor (BTRR) have been determined by using the positive period method. Reactor period was measured from 1.5 folding time, doubling time, 5 folding time respectively; and in the above three cases reactivity has also been calculated from INHOUR equation and period reactivity conversion table. The total worth of all control rods of BTRR are measured as 14.888 $, 14.672 $, 14.348 $ from INHOUR equation and 13.978 $, 13.672 $, 13.357 $ from period reactivity conversion table for 1.5 folding time, doubling time and 5 folding time respectively. The measured reactivity has also been compared with the previously measured reactivity and due to fuel burn up of the reactor expected lower values were observed.Journal of Bangladesh Academy of Sciences, Vol. 41, No. 1, 95-103, 2017

Author(s):  
Guangyao Lu ◽  
Zhaohui Lu ◽  
Wenyuan Xiang ◽  
Yonghong Lv ◽  
Wenyou Huang ◽  
...  

The control rod drive mechanism (CRDM) is installed on the CRDM socket in reactor pressure vessel (RPV). Directed by Rod Control and Rod Position Indicating System (RGL), CRDM can impel the control rods move up and down in the nuclear reactor core, which implements the functions of reactor start-up, power regulation, power maintaining, normal reactor shutdown and abnormal (accident) shutdown. CRDM was developed by China Nuclear Power Research Institute (CNPRI). Several design improvements were conducted to solve the problems appeared in the operation of nuclear power station. Test bench was also set up and cold tests were carried out to investigate the characteristics of CRDM. The cold tests included lifting experiment, inserting experiment, rod drop experiment. And studies were carried out to analyze the signals of lifting coil, moving coil, stationary coil and the vibration signals. The test results show that the design of CRDM is reasonable and the operation is reliable.


2016 ◽  
Vol 20 (1) ◽  
pp. 23-59
Author(s):  
Alberto Sartori ◽  
Antonio Cammi ◽  
Lelio Luzzi ◽  
Gianluigi Rozza

AbstractIn this work, two approaches, based on the certified Reduced Basis method, have been developed for simulating the movement of nuclear reactor control rods, in time-dependent non-coercive settings featuring a 3D geometrical framework. In particular, in a first approach, a piece-wise affine transformation based on subdomains division has been implemented for modelling the movement of one control rod. In the second approach, a “staircase” strategy has been adopted for simulating the movement of all the three rods featured by the nuclear reactor chosen as case study. The neutron kinetics has been modelled according to the so-called multi-group neutron diffusion, which, in the present case, is a set of ten coupled parametrized parabolic equations (two energy groups for the neutron flux, and eight for the precursors). Both the reduced order models, developed according to the two approaches, provided a very good accuracy compared with high-fidelity results, assumed as “truth” solutions. At the same time, the computational speed-up in the Online phase, with respect to the fine “truth” finite element discretization, achievable by both the proposed approaches is at least of three orders of magnitude, allowing a real-time simulation of the rod movement and control.


Author(s):  
Alberto Sartori ◽  
Antonio Cammi ◽  
Lelio Luzzi ◽  
Gianluigi Rozza

This work presents a reduced order model (ROM) aimed at simulating nuclear reactor control rods movement and featuring fast-running prediction of reactivity and neutron flux distribution as well. In particular, the reduced basis (RB) method (built upon a high-fidelity finite element (FE) approximation) has been employed. The neutronics has been modeled according to a parametrized stationary version of the multigroup neutron diffusion equation, which can be formulated as a generalized eigenvalue problem. Within the RB framework, the centroidal Voronoi tessellation is employed as a sampling technique due to the possibility of a hierarchical parameter space exploration, without relying on a “classical” a posteriori error estimation, and saving an important amount of computational time in the offline phase. Here, the proposed ROM is capable of correctly predicting, with respect to the high-fidelity FE approximation, both the reactivity and neutron flux shape. In this way, a computational speedup of at least three orders of magnitude is achieved. If a higher precision is required, the number of employed basis functions (BFs) must be increased.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Zhao ◽  
Lei Lou ◽  
Xingjie Peng ◽  
Bin Zhang ◽  
Lianjie Wang

In the design of a nuclear reactor, improving fuel utilization and extending burnup are two of the most important goals. A concept design of spectral-shift control rods is presented to extend cycle length and fuel utilization. First, a small lead-based reactor, SLBR-50, is preliminarily designed, and the design rationality is proved. Next, the concept design of spectral-shift control rods is presented and analyzed. Finally, numerical results of the small reactor design show that the burnup depth is extended by 73.3% and the fuel utilization rate for 235U and 238U is improved by 66.6 and 68.4%. All results are calculated using a Monte-Carlo code RMC. These results show advantages of the concept design for the spectral-shift control rod.


2018 ◽  
Vol 4 (1) ◽  
pp. 7
Author(s):  
Moh. Hardiyanto

The functional of a multi purpose research nuclear reactor control rod blade nuclear reactor is stabilized and controlling devices for nuclear chain reactions, the existing of Cerenkov's radiation impact and thermal neutron flux in reactor chamber. This research was conducted in Large Hadron Collider (LHC) - Muon Hadron Division at CERN, Lyon - France under International Research between Canadian Deuterium Uranium (CANDU) - Nuclear Reactor and Betha Group Section for sub-particles for nanomaterial. Using Juergen Model with quantum states approaching and testing by Muon-Hadron Stirrer equipment had determined the \ce {Th_xDUO2} derivatives materials. This material shown the strength of thermal neutron flux absorbed about 2.56 × 10⁵ − 1.94 × 10⁶ Ci/mm, the value of Electrical Conductivity is 26.62 − 29.98 in 800° - 890° C temperature, however at 2.1 × 10⁵ Ci/mm thermal neutron flux condition is 29.44 − 37.88 in IAEA standard. At 450 tesla magnetic field and 2.1 × 10⁵ Ci/mm thermal neutron absorber, the crystalline structure reduction is 6.88% until 10.95% for 25 years period in 45.7 megawatts with \ce {UO2} more enrichment and \ce {Pu2O} also \ce {Th2O_y} nuclear fuel element matrix.


Author(s):  
Yuanqiang Wu

Abstract The developments of a new hydraulic driving system of the control rods for nuclear reactors are introduced in this paper. Compared with other driving systems of the control rods, this new hydraulic driving system can be set within the reactor pressure vessel. Under any serious condition, the control rods will not be ejected from the reactor core. Its structure is very simple and the mechanic chain is very short, and thus it is very reliable. It can reduce the height of the nuclear reactor by one-third, and thus dramatically reduce the cost of the reactor. It uses the dynamic hydraulic pressure to control the motion of the control rods. Under extreme conditions, such as the failure of control power supply, the control rods will drop into the reactor core because of their self-weight to shut down the nuclear reaction. Because of these features, International Atomic Energy Agency (IAEA) is very interested in this safe and economical new control rod driving system. A brief history of the developments of the hydraulic driving system is given. Three configurations, the orifice hydraulic step cylinder, the groove-orifice hydraulic step cylinder, and the piston-groove hydraulic step cylinder, are introduced and their working principles are explained. The reliability and safety of the new system are validated by two experimental works: hydraulic step cylinder (HSC) under seismic and rocking conditions. Results from these experiments are presented.


Sign in / Sign up

Export Citation Format

Share Document