scholarly journals Soil weed seed bank: Importance and management for sustainable crop production- A Review

2016 ◽  
Vol 13 (2) ◽  
pp. 221-228 ◽  
Author(s):  
MM Hossain ◽  
M Begum

The seed bank is the resting place of weed seeds and is an important component of the life cycle of weeds. Seed banks are the sole source of future weed populations of the weed species both annuals and perennials that reproduce only by seeds. For this reason, understanding fate of seeds in the seed bank can be an important component of overall weed control. When weed seeds enter the seed bank, several factors influence the duration for which seeds persist. Seeds can sense the surrounding environment in the seed bank and use these stimuli to become dormant or initiate germination. Soil and crop management practices can directly influence the environment of seeds in the soil weed seed bank and can thus be used to manage seed longevity and germination behavior of weed seeds.J. Bangladesh Agril. Univ. 13(2): 221-228, December 2015

Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Richard G. Smith ◽  
Randa Jabbour ◽  
Andrew G. Hulting ◽  
Mary E. Barbercheck ◽  
David A. Mortensen

The transition period to certified organic production can present a significant weed management challenge for growers. Organic certification requires that prohibited fertilizers and pesticides must not have been used for 36 mo before harvest of the first organic crop. Understanding how organic management practices and initial weed seed-bank densities affect weed population dynamics during the transition period may improve weed management efficacy and adoption of organic practices. We examined how tillage systems (full or reduced) and cover crop species planted during the first transition year (rye or a mixture of timothy and red clover) affect the seedling densities of three common annual weed species, common lambsquarters, velvetleaf, and foxtail spp., during the 3-yr transition period. Weed seeds were applied in a one-time pulse at the beginning of the study at three densities, low, medium, and high (60, 460, and 2,100 seeds m−2, respectively), and cumulative seedling densities of each species were assessed annually. Treatment factors had variable and species-specific effects on weed seedling densities. In general, the full-tillage system, with an initial cover crop of timothy and red clover, resulted in the lowest density of weed seedlings following seed-bank augmentation. There was little consistent association between the initial densities of applied weed seeds in the weed seed bank at the start of the transition and weed seedling densities at the end of the transition period. This suggests that when multiple crop and weed cultural management practices are employed during the organic transition period, initial failures in weed management may not necessarily lead to persistent and intractable annual weed species management problems following organic certification.


Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 877-887 ◽  
Author(s):  
Ramon G. Leon ◽  
David L. Wright ◽  
James J. Marois

Crop rotation promotes productivity, nutrient cycling, and effective pest management. However, in row-crop systems, rotation is frequently limited to two crops. Adding a third crop, especially a perennial crop, might increase crop-rotation benefits, but concerns about disruption of agricultural and ecological processes preclude grower adoption of a three-crop rotation. The objective of the present research was to determine whether weed seed banks differ between a sod-based rotation (bahiagrass–bahiagrass–peanut–cotton) and a conventional peanut–cotton rotation (peanut–cotton–cotton) and the importance of crop phase in weed seed-bank dynamics in a long-term experiment initiated in 1999 in Florida. Extractable (ESB) and germinable (GSB) seed banks were evaluated at the end of each crop phase in 2012 and 2013, and total weed seed or seedling number, Shannon-Weiner's diversity (H′), richness, and evenness were determined. ESB increased in H′ (36%), richness (29%), and total number of weed seeds (40%) for sod-based compared with conventional rotation, whereas GSB increased 32% in H′, 27% in richness, and 177% in total number of weed seedlings. Crop phase was a determinant factor in the differences between crop rotations. The first year of bahiagrass (B1) exhibited increases in weed seed and seedling number, H′, and richness and had the highest values observed in the sod-based rotation. These increases were transient, and in the second year of bahiagrass (B2), weed numbers and H′ decreased and reached levels equivalent to those in the conventional peanut–cotton rotation. The B1 phase increased the germinable fraction of the seed bank, compared with the other crop phases, but not the total number of weed seeds as determined by ESB. The increases in H′ and richness in bahiagrass phases were mainly due to grass weed species. However, these grass weed species were not associated with peanut and cotton phases of the sod-based rotation. The results of the present study demonstrated that including bahiagrass as a third crop in a peanut–cotton rotation could increase weed community diversity, mainly by favoring increases in richness and diversity, but the structure and characteristics of the rotation would prevent continuous increases in the weed seed bank that could affect the peanut and cotton phases.


2018 ◽  
Vol 36 (0) ◽  
Author(s):  
Q. MAQSOOD ◽  
R.N. ABBAS ◽  
A. KHALIQ ◽  
Z.A. ZAHIR

ABSTRACT: A field trial was conducted with the aim of assessing weed seed bank status of soil under maize cultivation. It was worked out by sampling from soil corer at different depths ranging from 0-5, 5-10, 10-15, 15-20 and 20-25 cm. Weed seed bank was monitored with a cultivator, a rotavator, a mouldboard plough (MB) and a chisel plough in tilled plots under Atrazine 330 EC at 1.00 kg a.i. ha-1 at 20 DAS, hand weeding at 20 and 40 DAS and no weeding. Sixteen weed species were identified in soil samples, four species contributing about 72% of the total weed seed bank. Tillage system was more important determinant of weed seed density than the weed management practices. Movement pattern of weed seeds by all tillage treatments differ significantly over three weeding management practices at 0-5 cm soil core. Horse purslane (28%) and jungle rice (20%) were with high relative abundance. In both years, change in weed seed bank in upper 0-5 cm soil was significant as seeds germinating from this layer were either removed by hand or killed with chemical or left unchecked. Only chisel plough tapped the soil core below 20 cm and caused a small reduction in weed seed density. Mouldbold plough effectively buried weed seeds below 10 cm but not beyond 20 cm and hand hoeing reduced weed seed bank by killing weeds at seedling stage.


Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 175-183 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Sharon Clay

Approaches to crop production that successfully reduce weed seed production can benefit farming systems by reducing management inputs and costs. A 5-yr rotation study was conducted in order to determine the effects that interactions between crop rotation, tillage, and amount of herbicide and fertilizer (management inputs) have on annual grass and broad-leaved weed seed production and fecundity. There were 10 crop rotation and tillage system combinations and three levels of management inputs (high, medium, and low). Green and yellow foxtail were the major weed species, and together they yielded between 76 and 93% of collected weed seeds. From 1990 to 1994, average grass weed seed productions were 7.3 by 103, 3.7 by 1036.1 by 103and 5.7 by 103seeds m−-2, whereas average broad-leaved weed seed productions were 0.4 by 103, 0.4 by 103, 1.4 by 103, and 0.4 by 103seeds m−-2in crop rotations using conventional tillage (moldboard plow), conservation tillage, no tillage, and ridge tillage, respectively. Crop rotations using conventional or ridge tillage consistently produced more grass and broad-leaved weed seeds, especially in low-input plots. There was little difference in weed seed production among input levels for crop rotations using conservation tillage. Comparing rotations that began and ended with a corn crop revealed that by increasing crop diversity within a rotation while simultaneously reducing the amount of tillage, significantly fewer grass and broad-leaved weed seeds were produced. Among the rotations, grass and broad-leaved weed fecundity were highly variable, but fecundity declined from 1990 to 1994 within each rotation, with a concomitant increase in grass and broad-leaved weed density over the same period. Crop rotation in combination with reduced tillage is an effective way of limiting grass and broad-leaved weed seed production, regardless of the level of management input applied.


2020 ◽  
Vol 10 ◽  
pp. 1-14
Author(s):  
Charles N. Nyamwamu ◽  
Rebecca Karanja ◽  
Peter Mwangi

This study sought to determine the relation between soil weed seed bank and weed management practices and diversity in farms in Kisii Central Sub County, Western Kenya. Eight administrative sub-locations were randomly selected. Ten farms were selected at equal distance along transect laid across each sub-location. Weed soil seed bank was assessed from soil samples collected from each of the farms; a sub-sample was taken from a composite sample of ten soil cores of 5cm diameter and 15cm deep and placed in germination trays in a greenhouse. Weed diversity in soil weed seedbank was calculated using the Shannon index (H’). Twelve weed species from 12 genera of nine families were recorded. Diversity of the weed species in soil weed seed bank was (H'=1.48). Weed management practises significantly affected weed species soil weed seedbank reserves. Use of inefficient and ineffective hand-weeding techniques resulted in high weed species diversity and abundance.


Weed Science ◽  
2004 ◽  
Vol 52 (6) ◽  
pp. 936-947 ◽  
Author(s):  
L. Wiles ◽  
M. Brodahl

Comparing distributions among fields, species, and management practices will help us understand the spatial dynamics of weed seed banks, but analyzing observational data requires nontraditional statistical methods. We used cluster analysis and classification and regression tree analysis (CART) to investigate factors that influence spatial distributions of seed banks. CART is a method for developing predictive models, but it is also used to explain variation in a response variable from a set of possible explanatory variables. With cluster analysis, we identified patterns of variation with direction of the distance over which seed bank density was correlated (range of spatial dependence) with single-species seed banks in corn. Then we predicted patterns of the seed banks with CART using field and species characteristics and seed bank density as explanatory variables. Patterns differed by magnitude of variation in the range of spatial dependence (strength of anisotropy) and direction of the maximum range. Density and type of irrigation explained the most variation in pattern. Long ranges were associated with large seed banks and stronger anisotropy with furrow than center pivot irrigation. Pattern was also explained by seed size and longevity, characteristics for natural dispersal, species, soil texture, and whether the weed was a grass or broadleaf. Significance of these factors depended on density or type of irrigation, and some patterns were predicted for more than one combination of factors. Dispersal was identified as a primary process of spatial dynamics and pattern varied for seed spread by tillage, wind, or natural dispersal. However, demographic characteristics and density were more important in this research than in previous research. Impact of these factors may have been clearer because interactions were modeled. Lack of data will be the greatest obstacle to using comparative studies and CART to understand the spatial dynamics of weed seed banks.


2013 ◽  
Vol 27 (4) ◽  
pp. 656-663 ◽  
Author(s):  
Kristin K. Rosenbaum ◽  
Kevin W. Bradley

A survey of soybean fields containing waterhemp infestations was conducted just prior to harvest in 2008 and 2009 to determine the frequency and distribution of glyphosate-resistant waterhemp in Missouri, and to determine if there are any in-field parameters that may serve as indicators of glyphosate resistance in this species in future crop production systems. Glyphosate resistance was confirmed in 99 out of 144, or 69%, of the total waterhemp populations sampled, which occurred in 41 counties of Missouri. Populations of glyphosate-resistant waterhemp were more likely to occur in fields with no other weed species present at the end of the season, continuous cropping of soybean, exclusive use of glyphosate for several consecutive seasons, and waterhemp plants showing obvious signs of surviving herbicide treatment compared to fields characterized with glyphosate-susceptible waterhemp. Therefore, it is suggested that these four site parameters, and certain combinations of these parameters, serve as predictors of glyphosate resistance in future waterhemp populations.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7650 ◽  
Author(s):  
Xian Gu ◽  
Yu Cen ◽  
Liyue Guo ◽  
Caihong Li ◽  
Han Yuan ◽  
...  

The long-term use of herbicides to remove weeds in fallow croplands can impair soil biodiversity, affect the quality of agricultural products, and threaten human health. Consequently, the identification of methods that can effectively limit the weed seed bank and maintain fallow soil fertility without causing soil pollution for the next planting is a critical task. In this study, four weeding treatments were established based on different degrees of disturbance to the topsoil: natural fallow (N), physical clearance (C), deep tillage (D), and sprayed herbicide (H). The changes in the soil weed seed banks, soil nutrients, and soil microbial biomass were carefully investigated. During the fallow period, the C treatment decreased the annual and biennial weed seed bank by 34% against pretreatment, whereas the H treatment did not effectively reduce the weed seed bank. The D treatment had positive effects on the soil fertility, increasing the available nitrogen 108% over that found in the N soil. In addition, a pre-winter deep tillage interfered with the rhizome propagation of perennial weeds. The total biomass of soil bacterial, fungal, and actinomycete in H treatment was the lowest among the four treatments. The biomass of arbuscular mycorrhizal fungi in the N treatment was respectively 42%, 35%, and 91%, higher than that in the C, D, and H treatments. An ecological weeding strategy was proposed based on our findings, which called for exhausting seed banks, blocking seed transmission, and taking advantage of natural opportunities to prevent weed growth for fallow lands. This study could provide a theoretical basis for weed management in fallow fields and organic farming systems.


2019 ◽  
pp. 207-223
Author(s):  
Adyant Kumar ◽  
Tapasya Choudhary ◽  
Susmita Das ◽  
Santosh K. Meena
Keyword(s):  

2016 ◽  
Vol 27 (1) ◽  
pp. 9-19
Author(s):  
MJ Khatun ◽  
M Begum ◽  
MM Hossain

An experiment was conducted at the Agronomy Field Laboratory and net house of the Department of Agronomy, Bangladesh Agricultural University, Mymensingh from November 2012 to March 2014. Wheat (cv. BARI Gom-26) was sown with two tillage methods viz., (i) conventional tillage and (ii) stale seedbed technique and nine weeding regimes viz., (i) Unweeded (Control), (ii) Weed free, (iii) Hand weeding (HW) at 15 Days after sowing (DAS), (iv) HW at 15 and 45 DAS, (v)   HW at 25 and 45 DAS (vi) HW at 25 DAS (vii) HW at 25 and 60 DAS (viii) 2,4-D amine at 15 DAS and (ix) 2,4-D amine at 15 DAS + HW at 60 DAS. The design was split-plot with three replications where tillage method was assigned to the main plots and weeding regime to the sub plots. Conventionally tilled plots were infested with 12 weed species of which the five most dominant weed species in descent order were Polygonum coccineum L, Chenopodium album L, Cynodon dactylon L., Sonchus arvensis L. and Cyperus rotundus L. In stale seedbed out of 15 weed species Digitaria sanguinalis L. and Hedyotis corymbosa (L.) Lamk. was dominant instead of Chenopodium album L. and Sonchus arvensis L. identified in conventional tillage. In soil weed seed bank study, 28 species were identified in conventional tillage and 30 in stale seedbed. Among them annuals were dominant over perennials and broadleaves over grasses and sedges. In conventional tillage, the five most dominant weed species in descent order were Chenopodium album L., Hedyotis corymbosa L., Sonchus arvensis L., Polygonum coccineum L. and Rotala ramosior L. while in stale seedbed, five dominant weeds were Polygonum coccineum L., Chenopodium album L., Cynodon dactylon L., Lindernia procumbens Krock. and L. hyssopifolia L. Except the number of spikelets spike-1, rest of all other yield attributes and yield of wheat were affected significantly by the tillage methods. Stale seedbed technique yielded the higher grain (3.54 t ha-1) and the conventional tillage yielded the lower (3.13 t ha-1). The effect of weeding regime was significant on wheat except plant height and 1000-grain weight. The highest grain yield (3.85 t ha-1) was recorded from weed free treatment followed by 2,4-D amine at 15 DAS and lowest (3.22 t ha-1) from control. Interaction between the treatments was also. The highest grain yield (4.09 t ha-1) was recorded from the stale seedbed technique kept weed free followed by 2,4-D amine at 15 DAS and lowest grain yield (3.04 t ha-1) recorded from the conventional tillage retained unweeded.Progressive Agriculture 27 (1): 9-19, 2016


Sign in / Sign up

Export Citation Format

Share Document