scholarly journals Outdoor Environmental Radiation Monitoring and Estimation of Radiation Risk on Public in New Market Thana, Dhaka, Bangladesh

2021 ◽  
Vol 13 (3) ◽  
pp. 879-890
Author(s):  
I. K. Sumi ◽  
M. S. Rahman ◽  
K. N. Sakib ◽  
M. M. Tasnim ◽  
S. Yeasmin

The Real-time outdoor environmental gamma radiation (RTOEGR) dose rates were monitored at New Market Thana in Dhaka city to generate a baseline database that would help to know any deviation after operation of Rooppur NPP. The RTOEGR monitoring was carried out using a digital portable radiation monitoring device (DPRMD). The RTOEGR dose rates at the area of New Market Thana were ranged from 0.103 ± 0.004 µSv/h to 0.168 ± 0.007 µSv/h with an average of 0.135 ± 0.004 µSv/h. The public's annual effective doses were calculated based on RTOEGR dose rates, and those were varied from 0.181 ± 0.007 mSv to 0.295 ± 0.007 mSv with an average of 0.238 ± 0.007 mSv. Excess Lifetime Cancer Risk (ELCR) on public health was estimated based on the annual effective dose. The Public's ELCR were from 0.720×10-3 to 1.174×10-3 with an average of 0.892×10-3, which is higher than the worldwide standard value of 0.29×10-3. The mean RTOEGR dose rate of the New Market Thana in Dhaka city is comparable to that of Sabzevar city (Iran), Kathmandu city of Tribhuvan University (Nepal), Baghdad city (Iraq), Kirikkale city (Turkey).

2021 ◽  
Vol 9 (2) ◽  
pp. 32-40
Author(s):  
Abdullah Tareque ◽  
Suranjan Kumar Das ◽  
Mohammad Sohelur Rahman ◽  
Selina Yeasmin

Objective: Ionizing radiation is extensively used in the hospital for diagnosis and treatment procedures to patients and its usage increasing day by day with the socio-economic development of the country. The aim of the study is to monitor the real-time radiation around the Bangabandhu Sheikh Mujib Medical University (BSMMU) hospital campus and estimation of the radiation risk on public. Method: The real-time radiation monitoring around the BSMMU hospital campus was performed using digital portable radiation monitoring device (DPRMD). The DPRMD meets all European CE standards and the American “FCC 15 standard”. The DPRMD was placed at 1 meter above the ground on tripod and data taking time for each monitoring point (MP) was 1 hour. Each MP was identified using Garmin eTrex GPS device. 32 MPs were selected for taking the real-time radiation dose rates around the BSMMU hospital campus from August-September 2019. Results: The real-time radiation dose rates around the BSMMU hospital campus were ranged from 0.020-2.45 µSv/hr with an average of 0.211 ± 0.094 µSv/hr. The annual effective dose on public were ranged from 0.222 ± 0.052 mSv to 1.247 ± 0.071 mSv with an average of 0.368 ± 0.097 mSv. The excess life-time cancer risk (ELCR) on public was estimated based on the annual effective dose that ranged from 0.881×10-3 to 5.12×10-3 with an average value of 1.488×10-3 around the BSMMU hospital campus, which means that in every thousand people, one person is at the risk of developing cancer caused by the scattered radiation exposure from the hospital. Conclusion: Real-time radiation monitoring makes possible to ensure the protection the radiation worker and the public from unnecessary radiation hazard. The study also provides the instantaneous information of inappropriate operation of radiation generating equipments and improper handling of radioactive substances in the hospital.


2021 ◽  
Vol 9 (1) ◽  
pp. 15-22
Author(s):  
Abdullah Al Shuhan ◽  
Mohammad Sohelur Rahman ◽  
Selina Yeasmin ◽  
Md. Kabir Uddin Sikder

Objective: Ionizing radiation is widely used in the hospital for diagnostic and therapeutic procedures to patients and its usage increasing day by day. The aim of the study is to monitor the real-time radiation around the Shaheed Suhrawardy Medical College (ShSMC) hospital campus and estimation of radiation risk on public. Method: The real-time radiation monitoring around the ShSMC hospital was performed using digital portable radiation monitoring device (DPRMD). The DPRMD meets all European CE standards and the American “FCC 15 standard”. The DPRMD was placed at 1 meter above the ground on tripod and data collection time for each monitoring point (MP) was 1 hour. Each MP was marked out using Garmin eTrex GPS device. 32 MPs were chosen for collection of the real-time radiation dose rates around the ShSMC hospital campus in October 2020. Results: The real-time radiation dose rates around the ShSMC hospital campus were ranged from 0.37-3.39 µSv/hr with an average of 1.537 ± 0.359 µSv/hr. The annual effective dose on public were ranged from 1.326 ± 0.551 mSv to 4.902 ± 0.705 mSv with an average of 2.694 ± 0.629 mSv. The excess life-time cancer risk (ELCR) on public health was estimated based on the annual effective dose that ranged from 5.277×10ˆ-3 to 19.503×10ˆ-3 with an average value of 10.72×10ˆ-3 around the ShSMC hospital campus. Conclusion: Real-time radiation monitoring facilitates to ensure the safety of the radiation workers and the public from undue radiation hazard. The study also gives instant information of improper operation of radiation generating equipments and improper handling of radioactive substances in the hospital.


2017 ◽  
Vol 14 (3) ◽  
pp. 619-624
Author(s):  
Baghdad Science Journal

In this research the specific activity of natural radionuclides 226Ra, 232Th and 40K were determined by sodium iodide enhanced by thallium NaI(TI) detector and assessed the annual effective dose in Dielac 1 and 2 and Nactalia 1 and 2 for children of less than 1 year which are available in Baghdad markets. The specific activity of 40K has the greater value in all the types which is in the range of allowed levels globally that suggested by UNSCEAR. The mean value of annual effective doses were 2.92, 4.005 and 1.6325 mSv/y for 226Ra, 232Th and 40K respectively.


Ionizing radiation gives tremendous benefit to mankind in the hospital through diagnosis and treatment to patients but unnecessary radiation may cause harm to healthcare workers & the public. The purpose of the study is to continuous radiation monitoring in & around the three largest radiological facilities of Bangladesh such as Atomic Energy Centre Dhaka (AECD), Dhaka Medical College Hospital (DMCH) & Bangabandhu Sheikh Mujib Medical University (BSMMU) campuses, and estimation of radiation risk on healthcare workers & public health. Continuous radiation monitoring was performed in & around the AECD, DMCH, BSMMU campuses from August-October 2020 using the Chemiluminescent Dosimeters. The yearly effective doses to healthcare workers and the public due to radiation released from the facilities were ranged from 0.606 ± 0.031 mSv to 0.801 ± 0.0.042 mSv with a mean of 0.707 ± 0.053 mSv. The excess lifetime cancer risk (ELCR) on healthcare workers & public health were evaluated based on the yearly effective dose and ranged from 2.486 Χ 10-3 to 3.287 Χ 10-3 with a mean of 2.900 Χ 10-3. The average yearly effective dose and ELCR on healthcare workers & public health were lower than those of the worldwide permissible values. Continuous radiation monitoring in & around the largest radiological facilities is required for detection of the radiation generating equipment’s malfunctions and improper handling of the radioactive materials. The study would help for minimization of radiation risk on healthcare workers & the public and this keeps the hospital’s environment free from radiation hazard.


2015 ◽  
Vol 26 (4) ◽  
pp. 567-575
Author(s):  
H. A. Abdel Ghany ◽  
A. El-Shershaby ◽  
A. Sroor ◽  
M. Abdel-Samei

This work presents the results of the absorbed dose rates and estimated effective doses of the surface soils samples collected from different factories in the industrial region of Suez City, Egypt using high resolution gamma spectrometry system (HpGe) detector. The average activity concentrations of 226Ra, 238U, 232Th and 40K in fertilizer factories were: 74.54 ± 3.7, 26.54 ± 1.3, 14.68 ± 0.73 and 233 ± 11.68 Bq kg−1, respectively, in Ceramic factories were: 75.91 ± 3.7, 31.35 ± 1.56, 20.34 ± 1.01 and 255 ± 12.76 Bq kg−1, respectively, in textile factories were: 121 ± 6.07, 36.22 ± 1.81, 25.80 ± 1.29 and 1076 ± 53.83 Bq kg−1, respectively, in oil factories were: 76.24 ± 3.81, 25.90 ± 1.29, 15.26 ± 0.7 and 266 ± 13.31 Bq kg−1, respectively, and in steel factory were: 79.72 ± 3.98, 35.22 ± 1.76, 11.95 ± 0.59 and 163 ± 8.16 Bq kg−1, respectively. The calculated absorbed dose rates in factories were: 31.13 ± 1.55, 37.86 ± 1.89, 79.04 ± 3.95, 32.64 ± 1.63 and 29.99 ± 1.49 nGy h−1, respectively. Also, the annual effective dose in the above factories were: 0.03 ± 0.001, 0.04 ± 0.002, 0.09 ± 0.004, 0.03 ± 0.001 and 0.036 ± 0.001 mSv y−1, respectively. Also, the exposure of workers to radon was studied using solid state nuclear track detectors (CR-39). The results indicate that feeding materials variably affect the radioactivity measurements of the surface soil in different factories.


Author(s):  
Sidratul Moontaha ◽  
Dr. Mohammad Sohelur Rahman ◽  
Dr. Md. Shafiqul Islam ◽  
Selina Yeasmin

Background: In this study, outdoor environmental gamma radiation dose rates were measured at area of Shahbag Thana under Dhaka city and Atomic Energy Research Establishment (AERE) Campus at Savar. Aim of the study: This kind of study is required to detect the presence of natural and artificial radionuclides (if any) releasing from nuclear and radiological facilities in the country or from neighbouring countries. Materials and Methods: The measurement was performed using a real-time portable radiation monitoring device from August-November 2017. The real-time portable radiation monitoring device was placed on tripod at 1 meter above the ground and data acquisition time for each monitoring point (MP) was 1 hour. Total 34 MP were selected around major nuclear and radiological facilities in Bangladesh for collection of dose rate due to gamma-ray. The MPs were marked-out using Global Positioning System (GPS) navigation. The GPS reading of the sampling locations were varied from E90º23'40.08" to E90º24'32.82" and from N23º44'58.62" to N23º43'26.58" for Shahbag Thana and from E90º16'26.58" to E90º16'50.52" and from N23º57'12.96" to N23º57'6.12" for AERE Campus, Savar. Results: The measured dose rates due to natural radionuclides were ranged from 0.105 ± 0.036056 μSv.h-1 to 0.208065 ± 0.106377μSv.h-1 with an average of 0.141568 ± 0.046995 μSv.h-1. The annual effective dose to the population from outdoor environmental gamma radiation was varied from 0.128772 ± 0.044218 mSv to 0.25517 ± 0.130461 mSv and the mean was found to be 0.17362± 0.057635 mSv. This value is lower than some countries like India, China, Sweden, Italy and Czech Republic; and higher than Canada, Mexico, Indonesia, Korea, Turkey, Finland, Spain and some other countries. Conclusion: From this study, it was observed that there is no burden of population exposure due to man-made sources. Therefore, it can be concluded that adequate safety and radiation protection of nuclear & radiological facilities had been ensured which is required for minimizing of unnecessary exposure to populations from man-made sources. The estimated mean annual effective dose found in this study is not expected to contribute significant additional hazard from the radiological health point of view.


2020 ◽  
Vol 8 (E) ◽  
pp. 678-684
Author(s):  
M. R. Usikalu ◽  
C. A. Enemuwe ◽  
R. O. Morakinyo ◽  
M. M. Orosun ◽  
T. A. Adagunodo ◽  
...  

Natural radionuclides are present in every constituent of the environment. Monitoring of environmental radionuclides is very vital to avoid exposure above the threshold limit. Due to this, the background radiation from 238U, 232Th, and 40K of Bell University of Technology and Canaan Land City was determined from 20 sample points each in the two areas using RS230 Gamma Spectrometer. The mean activity concentration of 40K, 238U, and 232Th for Bells University of Technology was 442.66 Bq/kg, 41.98 Bq/kg, and 48.35 Bq/Kg, respectively. In Canaan City, mean activity concentration of 40K, 238U, and 232Th was 373.65 Bq/kg, 18.85 Bq/kg, and 67.22 Bq/kg, respectively. The mean absorbed dose rates recorded by the spectrometer directly were 70.03 nGy/h and 66.65 nGy/h, while that estimated from the activity concentration were 67.06 and 64.89 nGy/h for Bells University and Canaan City, respectively. The measured and estimated absorbed dose rates were higher than the safe limit of 57 nGy/h. The mean values of other radiological parameters estimated, except that of the gamma index and excess lifetime cancer risk were lower when compared to the recommended limit. It could be concluded that the possibility of suffering any radiation risk is low in these two areas, but there is possibility of cancer risk for someone that has stayed in the area for 70 years and above.


Author(s):  
D. O. Samson ◽  
A. F. Anazia

Measurement of radioactive contamination in some commonly consumed foodstuffs within the six area councils of Abuja, Nigeria was conducted in this study by means of a very sensitive and portable 3M/3-X Geiger Müller counter-based environmental radiation dosimeter. Eight different food samples were randomly selected in each of the sample locations making a total of 48 foodstuffs samples surveyed across the six area councils. The results obtained show that, the range of radiation dose levels in the analyzed samples varied from 0.01590.0001 to 0.34070.0002 μSvy-1 at Bwari; 0.14900.0001 to 0.39020.0002 μSvy-1 at AMAC; 0.00950.0001 to 0.02090.0001 μSvy-1 at Gwagwalada; 0.00570.0001 to 0.01330.0002  μSvy-1 at Kuje; 0.02740.0001 to 0.22710.0002 μSvy-1 at Abaji; Kwali was between 0.01820.0001 and 0.35030.0002 μSvy-1, and their corresponding arithmetic mean are 0.16900.0001 μSvy-1, 0.22560.0001 μSvy-1, 0.01330.0001 μSvy-1, 0.00880.0001 μSvy-1, 0.13600.0001 μSvy-1 and 0.12370.0001 μSvy-1, which gives estimated annual effective dose rates of 0.18850.0003 mSvy-1, 0.25760.0001 mSvy-1, 0.11700.0001 mSvy-1, 0.07710.0001 mSvy-1, 0.15530.0002 mSvy-1, and 0.14120.0001 mSvy-1 for Bwari, AMAC, Gwagwalada, Kuje, Abaji and Kwali area councils respectively. This finding reveals that the obtained values were sufficiently less than the maximum recommended global average exposure dose limit for environmental background (2.4 mSvy-1) and general public dose limit (1.0 mSvy-1). The radiation dose levels and dose rates associated with the intake of foodstuffs across the area councils are, therefore, relatively low and may not pose any immediate radiological health hazard to the populace, as deterministic radiation effects occur only in extreme cases.  


2019 ◽  
Vol 184 (3-4) ◽  
pp. 430-434 ◽  
Author(s):  
C Nyambura ◽  
S Tokonami ◽  
N O Hashim ◽  
M W Chege ◽  
T Suzuki ◽  
...  

Abstract Human beings are continuously exposed to ionising radiation originating from natural or artificial sources. Uranium-238 and Thorium-232 found in building materials are important sources of radon and thoron in the indoor environment. The concentration levels of radon, thoron and thoron progeny were measured in mud-walled, metallic or iron sheet-walled and stone-walled modern houses in Kilimambogo region, Kenya for 3 months. Radon and thoron concentration levels were measured using passive radon–thoron discriminative monitors (RADUET), while thoron progeny concentrations as the equilibrium equivalent thoron concentration (EETC) were measured using thoron progeny monitors. The mean radon concentration levels in mud, metallic and stone-walled dwellings were 67 ± 11, 60 ± 10 and 75 ± 10 Bq m−3, respectively. The mean thoron concentration levels in the corresponding dwellings were 195 ± 36, 71 ± 24 and 161 ± 31 Bq m−3, respectively, while EETCs were 12 ± 2, 3 ± 1 and 7 ± 1 Bq m−3, respectively. The annual effective doses for radon were 1.3 ± 0.2, 1.1 ± 0.1 and 1.4 ± 0.2 mSv y−1 in mud, metallic and stone-walled houses while those from thoron estimated from EETC were 2.4 ± 0.4, 0.5 ± 0.1 and 1.5 ± 0.2 mSv y−1 in the corresponding houses, respectively.


2017 ◽  
Vol 0 (0) ◽  
Author(s):  
Nesli Bingöldağ ◽  
Pelin Otansev

AbstractThe aim of this study is to determine the levels of background radiation in nine districts of Kırıkkale, Turkey. The outdoor gamma dose rate in the air was measured using a portable digital environmental radiation detector at 170 locations. The mean outdoor gamma dose rate in the air was determined as 121 nGy h


Sign in / Sign up

Export Citation Format

Share Document