scholarly journals KAJIAN SISTEM KINERJA PLTS OFF-GRID 1 kWp DI STT-PLN

2019 ◽  
Vol 10 (1) ◽  
pp. 38-44
Author(s):  
Redaksi Tim Jurnal

The Solar Power Plant Off-Grid 1 kWp at STT-PLN is one of the power plants built at STT-PLN to support renewable energy research, especially solar power generation. Since the solar power plant Off-Grid 1 kWp in STT-PLN has not yet known the optimum potential of electrical energy, the final yield (YF), the performance ratio (PR), and the efficiency of the system which is the parameters of a plant's performance Solar power. It is therefore necessary to analyze the performance of the solar power plant Off-Grid 1 kWp in STT-PLN, in order to know the operating system and the constraints that occur in the solar power plant Off-Grid 1 kWp in STT-PLN. To know the working parameters of Off-Grid 1 kWp in STT-PLN then do the research before and after maintenance of solar powerplant. Where final yield (YF), performance ratio (PR) before maintenance is 1.71343 Wh / Wp.day; 51.78%. While after maintenance of 3.10121 Wh / Wp.day; And 79.29%. From this research also obtained the efficiency of Off-Grid 1 kWp solar power system in STTPLN as a whole by 80,40%.

Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Reni Listiana ◽  
Tri Hardiyanti Yasmin

Solar power plants are power plants that convert solar energy (light) into electrical energy. Generation of electricity can be done by using photovoltaic or can also called solar cell, which happened at this time, solar cell can not absorb sunlight optimally, because solar cell only silent in one direction (static) therefore needed smart system for generator Solar power for solar power plants to work more optimally, to make the smart system is needed to read data from several sensors. To find the direction of the arrival of the sunlight rays, used four light dependent resistor sensor (LDR). Light intensity data processing, motor rotation direction determination and other sensor data will be done by microcontroller. Then the data residing on the solar power plant will be displayed on the display and measured how much different in voltage, current and power generated by solar panel. Then the output of the solar power plant be compared among the system with tracking and without tracking. Keywords: PLTS, Light Sensor, voltage, current and power


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Reni Listiana ◽  
Tri Handayani Yasmin

Solar power plants are power plants that convert solar energy (light) into electrical energy. Generation of electricity can be done by using photovoltaic or can also called solar cell, which happened at this time, solar cell can not absorb sunlight optimally, because solar cell only silent in one direction (static) therefore needed smart system for generator Solar power for solar power plants to work more optimally, to make the smart system is needed to read data from several sensors. To find the direction of the arrival of the sunlight rays, used four light dependent resistor sensor (LDR). Light intensity data processing, motor rotation direction determination and other sensor data will be done by microcontroller. Then the data residing on the solar power plant will be displayed on the display and measured how much different in voltage, current and power generated by solar panel. Then the output of the solar power plant be compared among the system with tracking and without tracking.  


2021 ◽  
Vol 896 (1) ◽  
pp. 012007
Author(s):  
J Windarta ◽  
S Handoko ◽  
T Sukmadi ◽  
K N Irfani ◽  
S M Masfuha ◽  
...  

Abstract The distribution of electricity from State Electricity Enterprise does not necessarily reach remote areas, so these areas require alternative sources of electricity, such as solar power plants. This study aims to design and analyze the potential of small-scale off-grid PV in terms of engineering and economics. The research method has used a simulation on PVSyst software with four components, namely solar panels and batteries. The research results were obtained based on four variations made: a 700Wp panel, a 24V 150Ah battery, and an 800W inverter. The design will produce electrical energy of 2 kWh/kWp/day with a total investment value of IDR 54,268,068 for a project period of 24 years. Compared to using a one kVA generator, the investment value was approximately IDR 208,575,063 for a 24-year project. Compared to batteries with the same specifications using a State Electricity Enterprise electricity charging source, the investment value for a 24-year project was IDR 81,036,162. NPV values in all variations obtained < 0, and PBP > the system project period. Thus, this system was considered not economically feasible and did not provide profit. Still, the off-grid solar power plant option was the most profitable than generators or battery power sources with State Electricity Enterprise charging.


2020 ◽  
Vol 2020 (3) ◽  
pp. 30-36
Author(s):  
I.M. Buratynskyi ◽  
◽  
T.P. Nechaieva ◽  

In view of the dependence of power generation at photovoltaic solar power plants on the level of intensity of solar radiation and cloud cover, their operation creates a number of problems in the power system. This article describes the problems of operation of such power plants of non-guaranteed capacity during their parallel operation as a part of the Unified Energy System of Ukraine. One of the measures of stabilizing the operation of power plants of non-guaranteed capacity is the use of systems of electric energy storage. The article describes the conditions of electrical connection, which ensure the possibility of combined operation of a system of electric energy storage and a photovoltaic solar power plant. The article presents the developed mathematical model of the combined operation of a photovoltaic solar power plant (PSPP) and a system of electric energy storage. We consider the daily mode of recharging from a PSPP and discharging batteries into the power system in order to preserve the excess of generated electricity at the PSPP, which earlier was lost due to the restriction on inverters caused by the overload with photovoltaic power. The model enables one to identify the key parameters of batteries – power and capacity, taking into account the physical and technical features of the operation of battery storage as to the conversion efficiency, the number of working cycles and the depth of possible discharge depending on the structure of PSPP equipment and solar radiation intensity. Using the developed model, we determined the values of power, charging and discharging capacities of a lithium-ion system for storing electrical energy, when it works together with a 10 MWAC photovoltaic solar power plant at different overload factors. The article presents some results of technical and economic assessment of the combined operation of a PSPP and a lithium-ion system for storing electrical energy. The results showed an increase in the power and capacity of a storage device with increase in the overload factor of PSPP, which leads to the growth of cost of electrical energy at their combined work. At the same time, the amounts and quality of electricity supplied increase. Keywords: mathematical model, photovoltaic solar power plant, system of electric energy storage, cost of electricity, power system


2020 ◽  
Vol 30 (3) ◽  
pp. 480-497
Author(s):  
Dmitriy S. Strebkov ◽  
Yuriy Kh. Shogenov ◽  
Nikolay Yu. Bobovnikov

Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.


The main objective of this research is analysed and compared the performance of two solar power plants to identify the possible operational problems in the tropical region. The grid connected PV power plants considered in the present study, Ten Merina and Senergy, were installed in the region of Thies (Senegal). Solar power plants have the same installed capacity 29.491 MWp. A period of one operation year of the solar power plants is considered, starting from January 2018 to December 2018. The performance parameters developed by the International Energy Agency (IEA) are used to analyse the performances of solar power plants. The results show that the plane of array irradiance at the sites is identical with an annual average of 6.2 kWh/m2/d. The annual average performance ratio and final yield of solar power plants are respectively 74.3 %; 4.61 kWh/kWp to Ten Merina and 75.9 %; 4.66 kWh/kWp to Senergy. These results are compared to other solar power plants installed in different locations around the world.


Author(s):  
Yuliia Daus ◽  
Valeriy Kharchenko ◽  
Igor Viktorovich Yudaev ◽  
Vera Dyachenko ◽  
Shavkat Klychev

The object of research in the chapter is the solar power plant as the source of additional economically expedient power supply of the electrical energy consumer. The purpose of this research is to analyze the options for the layout of solar power plant, taking into account the solar energy potential of the district, the design features of the proposed location, the load curve of the consumer, and the cost of the generated electrical energy. The chapter presents the results of calculation and selection of the parameters of solar power plant elements on the roof of the consumer's production building. The chapter presents the results of research of the dependence of the cost of the electricity generated by the solar power plant on the number of installed panels, which in order to increase the realized solar energy potential of the district also allows adding photoelectric modules and accumulating devices in the layout of the operating station at tariff growth. The chapter presents the results of researching these areas, that are conducted by the authors and which are completely original.


2019 ◽  
Vol 125 ◽  
pp. 10003 ◽  
Author(s):  
Jaka Windarta ◽  
Ardhito Pratama ◽  
Denis ◽  
Agung Nugroho

Indonesia is a country that is geographically located right in the equator and variously advantage and the wide for the use of solar energy. Indonesia has a relatively high radiation level, which is 4.80 kWh / m2 / day. Cemara Island is a tourist place but does not have electricity from PLN because access to its location is still difficult to reach. So from that chosen the planning system for the use of electrical energy using solar energy. However, economic analysis is needed so that the estimated weaknesses of the off-grid solar system can be estimated so as to reduce the risk of losses. The testing of each component in the Solar Power Plant system also needs to be done to determine the condition and quality of the components to be used. The economic analysis of the Cemara Island Solar Power Plant System with an initial investment of Rp 52,553,000, in scenario 1 uses interest at 6%, then in scenario 2 without using interest. Through calculations by looking for the value of COE (Energy Cost), NPC (Net Present Cost) and BEP (Break-Even Point), so that costs can be calculated by the manager with the number of 11 managers per month.


Sign in / Sign up

Export Citation Format

Share Document