scholarly journals ANALISIS POTENSI PENGHEMATAN PADA PLTU UNIT 5 DENGAN AUDIT ENERGI PADA MOTOR PEMAKAIAN SENDIRI DI PT PJB MUARA KARANG

2018 ◽  
Vol 9 (1) ◽  
pp. 1-7
Author(s):  
Redaksi Tim Jurnal

PT PJB Muara Karang power plant is an industry with a large electrical energy consumption for auxiliary power. In ISO50001 itensitas Energy Consumption (IKE) is a great need to audit energy consumption. In the contract the company's performance also set a percentage of personal use should not exceed 6% of the electricity production. Currently Posentase usage of own consumption at power plant unit 5 is greater than the power plant unit 4. It is necessary for an energy audit for the usage of its own in order to decrease the percentage of personal use in the power plant 5 0.5% of the current conditions and find energy savings opportunities in the power plant unit 5.To analyze this problem using energy audits, analyzes the performance test method using "gate cycle" and testing the quality of the voltage source by using the power quality measurement analysis. Having found the equipment with the largest energy comsumtion fish bone tools used to find the main cause of this disorder.

2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2012 ◽  
Vol 16 (3) ◽  
pp. 131
Author(s):  
Didik Ariwibowo

Didik Ariwibowo, in this paper explain that energy audit activities conducted through several phases, namely: the initial audit, detailed audit, analysis of energy savings opportunities, and the proposed energy savings. Total energy consumed consists of electrical energy, fuel, and materials in this case is water. Electrical energy consumption data obtained from payment of electricity accounts for a year while consumption of fuel and water obtained from the payment of material procurement. From the calculation data, IKE hotels accounted for 420.867 kWh/m2.tahun, while the IKE standards for the hotel is 300 kWh/m2.tahun. Thus, IKE hotel included categorized wasteful in energy usage. The largest energy consumption on electric energy consumption. Largest electric energy consumption is on the air conditioning (AC-air conditioning) that is equal to 71.3%, and lighting and electrical equipment at 27.28%, and hot water supply system by 4.44%. Electrical energy consumption in AC looks very big. Ministry of Energy and Mineral Resources of the statutes, the profile of energy use by air conditioning at the hotel by 48.5%. With these considerations in the AC target for audit detail as the next phase of activity. The results of a detailed audit analysis to find an air conditioning system energy savings opportunities in pumping systems. Recommendations on these savings is the integration of automation on the pumping system and fan coil units (FCU). The principle of energy conservation in the pumping system is by installing variable speed drives (VSD) pump drive motor to adjust speed according to load on the FCU. Load variations FCU provide input on the VSD pumps to match. Adaptation is predicted pump can save electricity consumption up to 65.7%. Keywords: energy audit, IKE, AC


2020 ◽  
Vol 26 (19-20) ◽  
pp. 1804-1814
Author(s):  
Renkai Ding ◽  
Ruochen Wang ◽  
Xiangpeng Meng ◽  
Long Chen

To coordinate the contradictory relationship between dynamic performances and electrical energy consumption of an electromagnetic active suspension, a hybrid electromagnetic actuator that integrates with a linear motor and a hydraulic damper is developed, which can achieve active control and energy regeneration compared with the linear electromagnetic actuator. A mode-switching control method is put forward based on the modified skyhook control. The stability of the switched controller with a specific switching rule is investigated based on the Lyapunov theorem. Then, the switching control system of a hybrid electromagnetic actuator is designed. Finally, a linear electromagnetic actuator and a passive damper are taken as comparison objects, and comparative bench tests, including a dynamic performance test and an energy consumption test, are conducted. The test results show that the hybrid electromagnetic actuator with mode-switching control can balance the dynamic performances and electrical energy consumption effectively.


2020 ◽  
Vol 7 (1) ◽  
pp. 77-85
Author(s):  
Darno

Teluk Lembu Gas Power Plant (PLTG) is one type of power plant that uses the power of burning fuel and high pressure air. To be able to meet the needs of electrical energy on the island of Sumatra, especially in the Riau region,electricity production must not experience a decrease in productivity due to equipment damage. Obstacles that arise are frequent downtime unexpectedresulting in  the production  of electricity is  interrupted or  even  to  cause derating caused by damage to the operational when the engine is running. This study aims to provide recommendations  for  equipment  maintenance  andtime  intervals  optimal  inspectionin  the generator system. The research method used is Reliability Centered Maintenance (RCM) withanalysis  quantitative.  Where  are  the  stages  of  implementing the  RCM  method,  namely determining thecomponents criticalin the PLTG generator engine, determining thevalues, determining the Mean Time to Failure (MTTF) and Mean Time to Repair (MTTR)time interval optimal maintenance,  and making a table of  causes of damage to  thecomponents  generator engine. After analyzing it, it was found that thecomponent criticalof PLTG Teluk Lembu is the Diesel Motor. This is obtained based on the component with the highest frequency of damage, namely 13 damage during a period of 1 year. From the results of data processing, it is obtained that the MTTF value is 0.92441 hours and the MTTR value is 0.89014 hours. Theinspection time interval optimalis 25 days, so it is advisable to carry out Corrective and Preventive maintenance activities for Diesel Motorcycles periodically every 25 days (PM 25D) in order to increase the reliability of the Diesel Motor


2021 ◽  
Vol 289 ◽  
pp. 01014
Author(s):  
Ahmed Al–Okbi ◽  
Yuri Vankov ◽  
Hakim Kadhim

At the present time, operating hybrid air-conditioning systems that use solar energy to saving electrical energy while improving the performance has become necessary to protect the environment, reduce pollution and emissions caused by using fuels and gases. In Iraq, temperatures reach half the boiling point at summer, therefore the demand for air conditioning systems increases, air conditioning systems consume more than half of average electricity production which affects on reliability and stability of the electrical energy thus leads to a continuous power outage. So, the issue of using renewable energies becomes more attractive. Because of saving energy leads to ensuring the reliability of electricity and reduces the consumption of fuels and gases that pollute on the environment and negatively affect on the ozone layer. In the current research, the atmosphere of Baghdad city was used to collect solar thermal energy and convert it into thermal energy through an evacuated solar collector by water and combine it with a conventional air conditioner in the part that follows the compressor in order to reduce the electrical energy consumption on the compressor and increase coefficient of performance. Several tests were conducted on the proposed system to compare results with the conventional system and evaluate performance. The results showed that the coefficient of performance with the hybrid system became 8.97 more efficient instead of 4.27 compared to the conventional system, and the energy consumption decreased by 52%.


2020 ◽  
Vol 4 (4) ◽  
pp. 422-431
Author(s):  
Iqbal Fahri Tobing ◽  
Mustaqimah Mustaqimah ◽  
Raida Agustina

Abstrak. Pengering tipe Tray Dryer merupakan salah satu alat pengering rak atau pengering kabinet yang dapat digunakan untuk mengeringkan berbagai jenis bahan baku makanan. Alat pengering ini dirancang dengan tipe paralel flow tray dimana udara panas yang dihasilkan akan disirkulasikan sejajar dengan permukaan rak pengering dan bekerja menggunakan sumber energi listrik. Penelitian ini bertujuan untuk memodifikasi pengering tray dryer dengan penambahan insulator dan mengetahui konsumsi energi alat pengering tray dryer pada pengeringan kunyit. Parameter pengujian uji kinerja alat tanpa bahan meliputi distribusi suhu, kelembaban relatif dan kecepatan aliran udara dan untuk perhitungan konsumsi energi meliputi penggunaan energi listrik, perhitungan energi thermal, energi mengeringkan bahan, energi untuk menguapkan air bahan, efisiensi pengeringan, energi kipas dan kehilangan energi melalui cerobong. Pada pengujian pengering tray dryer suhu yang digunakan adalah 55°C. Hasil penelitian menunjukkan bahwa secara fungsional dan struktural alat pengering tray dryer setelah dimodifikasi dengan melapisi dinding luar ruang pengering dapat beroperasi dengan baik, proses pengeringan lebih cepat dan energi yang digunakan juga sedikit dibandingkan dengan sebelum dimodifikasi. Konsumsi energi listrik pada alat pengering tray dryer setelah dimodifikasi pada saat proses pengeringan dengan suhu 35oC selama 6,5 jam sebesar 35,33 kWh (127,2 MJ), pada suhu 45oC sebesar 24,26 kWh (88,06 MJ) dengan lamanya pengeringan selama 4,5 jam dan suhu 55oC sebesar 18,89 kWh (68,01 MJ) dengan lama pengeringan selama 3,5 jam, hal ii disebabkan lama pengeringan merupakan salah satu faktor yang menyebabkan besar kecilnya konsumsi energi listrik. Konsumsi energi thermal selama proses pengeringan dengan suhu 35°C adalah sebesar 17,53 MJ, suhu 45°C sebesar 19,54 MJ dan suhu 55°C sebesar 21,34 MJ. Berdasarkan hasil kalkulasi antara energi listrik dan energi thermal didapatkan efisiensi pengeringan pada suhu 35°C sebesar 27,80%, suhu 45°C sebesar 22,2% dan suhu 55°C sebesar 31,4%.Modification Of Tray Dryer With InsulatorAbstract. Tray Dryer is a type of dryer or cabinet dryer that can be used to dry various types of food raw materials. This dryer is designed with a parallel flow tray type where the hot air generated will be circulated parallel to the surface of the drying rack and work using an electric energy source. This study aims to modify the tray dryer with the addition of an insulator and determine the energy consumption of dryer dryers in turmeric drying. The test parameters of the performance test of equipment without material include temperature distribution, relative humidity and air flow velocity and for the calculation of energy consumption including the use of electrical energy, thermal energy calculation, energy drying material, energy to evaporate material water, drying efficiency, fan energy and energy loss through chimney. In testing the tray dryer dryer the temperature used is 55 ° C. The results showed that functionally and structurally the tray dryer after being modified by covering the outer walls of the drying chamber could operate well, the drying process was faster and the energy used was also less compared to before it was modified. Electric energy consumption in the tray dryer after being modified during the drying process with a temperature of 35oC for 6.5 hours amounted to 35.33 kWh (127.2 MJ), at a temperature of 45oC of 24.26 kWh (88.06 MJ) with a duration drying for 4.5 hours and a temperature of 55oC of 18.89 kWh (68.01 MJ) with a drying time of 3.5 hours, this is due to the length of drying is one of the factors causing the size of the electrical energy consumption. The consumption of thermal energy during the drying process with a temperature of 35 ° C is 17.53 MJ, a temperature of 45 ° C is 19.54 MJ and a temperature of 55 ° C is 21.34 MJ. Based on the results of calculations between electrical energy and thermal energy obtained drying efficiency at a temperature of 35 ° C at 27.80%, a temperature of 45 ° C at 22.2% and a temperature of 55 ° C at 31.4%


2018 ◽  
Vol 248 ◽  
pp. 03001
Author(s):  
Maria Isfus Senjawati ◽  
Lusi Susanti ◽  
Hilma Raimona Zadry ◽  
Prima Fithri

Increased energy consumption can lead to depletion of fossil energy reserves that can pose a threat to energy supply in Indonesia. One way to increase the intensity of energy savings is to make changes in consumer behavior. The development of gender roles, abilities, and attention led most researchers to argue that women are more consistent in attention to environmental change than men. Women are more concerned with environmental quality and participate in environmental activities. Thus, this research tries to determine the influence of psychological factors on the behavior of household electrical energy consumption in term of gender differences. This study used questionnaires distributed using Google Docs to household electrical respondents several in Indonesia. Referring to ABC (Antecedents-Behaviour-Consequences) model of consumer behavior, the total of 808, questionnaires from 526 male respondents and 282 female respondents were successfully collected. The data were processed by the Partial Least Square Equation Modeling Model (SEM-PLS) using Smart-PLS software. The study concluded that,if given the consequences, women have higher influence to the behavior of electrical energy consumption than men. Overall psychological factors have a positive and significant influence on the behavior of electric energy consumption in Indonesia.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature of waste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses of integrating backpressure turbine of a power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency of the primary fuel is calculated for different operating range of the heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperature difference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit. 


Author(s):  
Mychael Gatriser Pae ◽  
Tegar Prasetyo ◽  
Suharyanto Suharyanto ◽  
T. Haryono ◽  
Ridwan Budi Prasetyo

The reliability of stand-alone and hybrid power plant systems was dependent on electrical loads that the system must supply. For example, on renewable energy sources (RES), Reviews of those systems needs to be calculated well before the development process. One of the most important processes in the initial calculation is the electrical load that must be supplied by the system. The electrical load has a major influence on the amount of power generating capacity. A power plant that has higher electricity production than the load to be fulfilled was considered capable of meeting the system electrical load requirements. However, in terms of the reliability, it is considered as a loss because it will affect the life of the components and the high cost of operating from the system. Therefore, this research discusses the effect of load growth on hybrid power plant system performance of Baron Techno Park. The result of the research shows that the total electricity production of Baron Techno Park hybrid power plant system is 319.695 kWh/year with Net Present Cost (NPC) is $560.077 and the cost of energy (COE) is $0.64/kWh. Total electricity consumption of the PLTH Baron Techno Park is 67.413 kWh/year with total excess electrical energy is 245,547 kWh/year. Load growth of 5%, 10%, 15%, and 20% of the total current load affect the consumption of electric energy, excess electrical energy, and COE. The higher the load growth will affect the total electricity consumption that is increasingly higher so that the total excess electrical energy is lower. This research found that the performance of the system is not influenced by load growth. The highest performance of the system is resulted by the wind turbine of 72.62%, followed by solar panels of 18.82%, and biodiesel of 8.56%.


2019 ◽  
Vol 50 (2) ◽  
pp. 135-140 ◽  
Author(s):  
C. Karaca ◽  
G.A.K. Gurdil

Abstract The aim of this study was to determine biogas amount and the energy value produced from animal manure in Samsun province, Turkey. For this purpose, biogas potential was calculated considering the number of cattle, buffalo and laying hens in the province. Samsun has a total of about 300 thousand cattle, 18 thousand buffalo, and 1.4 million laying hens. From these animals in the province, 2.95 million t of cattle manure, 178 thousand t of buffalo manure, and 40 thousand t of laying hens manure, including the total of 3.2 Mt of manure per year is obtained. Annually, 53.6 Mm3 of biogas can be produced from the usable amount of this manure. The heating value of biogas produced from this manure is about 1.22 PJ. The electricity production from this biogas is about 135 GWhel. These values can provide 4.96% of Samsun’s annual electrical energy consumption (2720 GWhel). The distribution of these calculated amounts by districts was mapped. When districts are listed according to the biogas production amount, the top seven Samsun districts are Bafra (16.2%), Center (16.0%), Carsamba (12.1%), Vezirkopru (11.0%), Terme (7.6%), Alacam (7.4%) and Havza (7.0%).


Sign in / Sign up

Export Citation Format

Share Document